
Data Confidentiality and Integrity
Scott A. Carr and Mathias Payer

Motivation:
Protect integrity and confidentiality of select
data from memory safety vulnerabilities

Background:
• Vulnerabilities -> Memory errors
• Complete protection expensive
• SoftBound: 112% for SPEC CPU [1]

Insights:
• Not all data critical/sensitive
• Overhead proportional to amount of

protected data

Idea:
• Programmer decides what is protected
• Annotations in C/C++
• Enforcement: compiler plugin, runtime

Implementation:
• LLVM Pass
• Runtime library creates and maintains

metadata for each protected variable
• Memory regions enforced with SFI

Case Study – PolarSSL:
• Prototype instruments library
• Passes all tests
• Lower overhead than SoftBound

Ongoing Work:
• Aggressive in-lining and optimization of

security checks
• Automatically identify sensitive variables

Protected
Data

Unprotected
Memory

Meta
Data

void vulnerable() {

struct key *secret;

int cmd[5];

secret = load_key();

input(cmd); // vulnerability

}

sensitive key *secret;

SFI

x Slow Down

DCI 7.28

SoftBound 11.4

1. SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C. Santosh Nagarakatte et al. PLDI 2009

2. Code Pointer Integrity. Kuznetsov et. al. OSDI 2014

Purdue University - Department of Computer Science

