Data Confidentiality and Integrity

Scott A. Carr and Mathias Payer

Motivation: void vulnerable() {
Protect integrity and confidentiality of select | otr()ct key *secret;
data from memory safety vulnerabilities int cmd[5];

secret = load key():

Background: input(cmd); // vulnerability

* Vulnerabilities -> Memory errors !

* Complete protection expensive

e SoftBound: 112% for SPEC CPU [1]
sensitive key *secret;

Insights:

 Not all data critical/sensitive x Slow Down
 QOverhead proportional to amount of

tected dat
protected data el 258

|dea: SoftBound 11.4

* Programmer decides what is protected
 Annotations in C/C++
* Enforcement: compiler plugin, runtime

Implementation:
* LLVM Pass
 Runtime library creates and maintains

metadata for each protected variable Viemory
* Memory regions enforced with SF _
DET:
Case Study — PolarSSL:

* Prototype instruments library
e Passes all tests
e Lower overhead than SoftBound

1. SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C. Santosh Nagarakatte et al. PLDI 2009
2. Code Pointer Integrity. Kuznetsov et. al. OSDI 2014

Ongoing Work:

* Aggressive in-lining and optimization of P N
security checks URDUE CER]

 Automatically identify sensitive variables

Center for Education and Research
in Information Assurance and Security



