
COMPILER-BASED MITIGATIONS OF VULNERABILITIES IN SYSTEMS

SOFTWARE

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Scott A. Carr

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2017

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Mathias Payer

Department of Computer Science

Dr. Aniket Kate

Department of Computer Science

Dr. Suresh Jagannathan

Department of Computer Science

Dr. Xiangyu Zhang

Department of Computer Science

Approved by:

Dr. Voicu Popescu

Head of the Departmental Graduate Program

iii

This dissertation is dedicated to the countless people who have taught me throughout

my life, to my family, to my friends, and most of all to Nikki.

iv

ACKNOWLEDGMENTS

I thank my collaborators, reviewers, editors, and proof readers for their invaluable

efforts which greatly improved this dissertation. To my advisor, Mathias Payer, I

am grateful for the guidance provided and for the continual feedback throughout

the last three years. In our research group, we hold ourselves to a high standard,

which I believe shows in the quality of our work. To my committee members, Suresh

Jagannathan, Xiangyu Zhang, and Aniket Kate, I thank you for your insightful

questions and suggestions that helped clarify and strengthen this document. I truly

appreciate all the feedback and advice on my papers, presentations, and dissertation

from my peers and friends, including Nathan Burow, Daniele Midi, Jeff Avery, Gregory

Essertel, Bader AlBassam. Thank you to past and present members of my research

group, Ahmed Hussain, Abe Clements, Craig West, Alessandro Di Federico, Jacek

Rzeniewiwcz, Dominik Preikschat, Derrick McKee, Hui Peng, Terry Hsu, Yuseok Jeon,

Priyam Biswas, Kryiakos Ispoglou, Naif Almakdhub, Prashast Srivastava, and Sushant

Dinesh. Lastly but crucially, I give my deepest gratitude to my family, especially to

my parents and to Nicole, my wife, whose confidence in me never waivers.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xiii

1 INTRODUCTION . 1
1.1 Securing Systems Software . 1

1.1.1 Safe Systems Programming Languages 2
1.1.2 Formal Verification . 3
1.1.3 Vulnerability Mitigation . 4

1.2 Challenges . 5
1.3 Attacker Model . 6
1.4 Thesis Statement . 6
1.5 Contributions . 7
1.6 Publications . 9
1.7 Summary and Outline . 9

2 SECURITY BACKGROUND . 11
2.1 Attack Vectors . 11

2.1.1 Control-Flow Hijack Attacks . 12
2.1.2 VTable Attacks . 12

2.2 Non-Control-Data Attacks . 13
2.3 Widely Deployed Defenses . 13
2.4 Defense Techniques Research . 15

2.4.1 Static Bug Finding . 15
2.4.2 Runtime Monitors . 15
2.4.3 Logging and Auditing . 16

2.5 Security Properties of C/C++ . 16
2.5.1 Manual Memory Management 17
2.5.2 Analysis Challenges . 18
2.5.3 Just-In-Time Compilation . 19
2.5.4 Dynamic Dispatch . 19

2.6 Control-Flow Integrity . 20
2.7 Memory Safety . 21

2.7.1 Spatial Memory Safety . 22
2.7.2 Temporal Memory Safety . 22

vi

Page
2.8 Memory Safety Enforcement Mechanisms 23

2.8.1 Memory Safety Using Pointer Checking 24
2.8.2 Memory Safety Using Object Alignment 25
2.8.3 Protecting Metadata from Attackers 25
2.8.4 Important Memory Safety Mechanisms 26

2.9 Type Safety . 26
2.9.1 Type Safety Enforcement Mechanisms 28

2.10 Security Background Summary . 28

3 CONTROL-FLOW INTEGRITY . 29
3.1 Abstract . 29
3.2 Introduction . 29

3.2.1 Foundational Concepts . 34
3.2.2 Control-Flow Integrity Example 34
3.2.3 Classification of Control-Flow Transfers 36
3.2.4 Classification of Static Analysis Precision 39

3.3 Prior Work on Static Analysis . 40
3.3.1 A Theoretical Perspective . 40
3.3.2 A Practical Perspective . 43
3.3.3 Backward Control Flows . 44
3.3.4 Nomenclature and Taxonomy 45

3.4 Security . 45
3.4.1 Qualitative Security Guarantees 47
3.4.2 Quantitative Security Guarantees 50
3.4.3 Implementations . 51
3.4.4 Results . 53
3.4.5 Previous Security Evaluations and Attacks 59

3.5 Performance . 61
3.5.1 Measured CFI Performance . 61
3.5.2 Reported CFI Performance . 66

3.6 Summary . 68

4 VTRUST . 70
4.1 Abstract . 70
4.2 Introduction . 70
4.3 Threat Model . 75

4.3.1 Defense Mechanisms . 76
4.3.2 Attack Surface . 76

4.4 Design . 78
4.4.1 Overview of VTrust . 78
4.4.2 Virtual Function Type Enforcement 79
4.4.3 VTable Pointer Sanitization . 84

4.5 Implementation . 88

vii

Page
4.5.1 Virtual Function Type Enforcement 89
4.5.2 VTable Pointer Sanitization . 92

4.6 Summary . 94

5 DATA CONFIDENTIALITY AND INTEGRITY 95
5.1 Abstract . 95
5.2 Introduction . 96
5.3 Motivation . 98

5.3.1 Memory Safety Overhead . 98
5.3.2 Memory Safety, Integrity, and Confidentiality 98
5.3.3 Non-Control-Data Attacks . 99

5.4 Threat Model . 100
5.5 Design . 100

5.5.1 Determining the Sensitive Types 101
5.5.2 Sensitivity Rules . 103
5.5.3 Enforcement . 104

5.6 Implementation . 105
5.6.1 Identifying Annotated Types 105
5.6.2 Identifying Sensitive Variables 106

5.7 Runtime . 109
5.7.1 Sensitive Globals and Constants 110
5.7.2 Instruction Rewriting . 111
5.7.3 Rewriting for Non-Sensitive Variables 111
5.7.4 Rewriting for Sensitive Variables 112
5.7.5 Standard Library Instrumentation 113
5.7.6 Limitations . 115

5.8 Summary . 116

6 EVALUATION . 117
6.1 Evaluation Plan . 117
6.2 VTrust . 118

6.2.1 Virtual Call Statistics . 118
6.2.2 Performance Overhead . 120
6.2.3 Performance Comparison . 123
6.2.4 Memory Overhead . 125
6.2.5 Case Study: Real World VTable Injection Attacks 126
6.2.6 Case Study: Real World VTable Reuse Attacks 126

6.3 Data Confidentiality and Integrity . 127
6.3.1 Microbenchmarks . 129
6.3.2 Case Study: libquantum . 131
6.3.3 Case Study: mbed TLS . 131
6.3.4 Case Study: astar . 133
6.3.5 SPEC CPU2006 Evaluation 133

viii

Page

6.3.6 Security Evaluation . 136
6.4 Summary . 137

7 DISCUSSION . 138
7.1 Benchmarking Control-Flow Integrity Mechanisms 138
7.2 Cross-cutting Concerns for Control-Flow Integrity 139

7.2.1 Enforcement Mechanisms . 139
7.2.2 Open Problems . 141
7.2.3 Research Frontiers . 142

7.3 Data Confidentiality and Integrity Future Work 144
7.3.1 Automatically Identifying Sensitive Data 145
7.3.2 Sensitivity Analysis . 145

7.4 Summary . 146

8 RELATED WORK . 147
8.1 Memory Safety . 147
8.2 Control-Flow Integrity . 149

8.2.1 VTable Hijacking Defense . 149
8.3 Non-Control-Data Defenses . 153
8.4 Isolation Mechanisms . 154
8.5 Summary . 155

9 CONCLUSION . 156

REFERENCES . 158

VITA . 170

ix

LIST OF TABLES

Table Page

3.1 Full quantitative security results for number of equivalence classes. 54

3.2 Measured and reported CFI performance overhead (%) on the SPEC CPU2006
benchmarks. The language of each benchmark is indicated in parenthesis:
C(C), C++(+), Fortran(F). CF in a cell indicates we were unable to build
and run the benchmark with CFI enabled. Blank cells mean that no results
were reported by the original authors or that we did not attempt to run
the benchmark. Cells with bold fonts indicate 10% or more overhead, ntc
stands for no tail calls. 63

3.3 CFI performance overhead (%) reported from previous publications. A
label of C indicates we computed the geometric mean overhead over the
listed benchmarks, otherwise it is the published average. 68

5.1 Performance Overhead of existing memory safety mechanisms (as reported
by the authors). 98

6.1 Virtual call related statistics for SPEC CPU2006 benchmarks written in
C++. The unit M stands for millions, and B stands for billions. 118

6.2 VTable-related statistics of Firefox, including the count of (1) vtables, (2) vtable

pointer assignments, (3) vtable pointers read operations, and (4) call instructions,

as well as the ratio of indirect calls to call instructions, and the ratio of virtual

calls to indirect calls. 120

6.3 Public VTable hijacking exploits against Firefox. 126

8.1 Comparison between defenses against VTable hijacking attacks, including
whether they can (1) defeat VTable hijacking, and support (2) incremental
building (i.e., modularity), (3) external libraries, and (4) writable code
(i.e., dynamic generated code). This table also shows the comparison of
(5) speed of class hierarchy analysis, (6) source code dependency, and (7)
performance overhead. The abbreviation SD stands for SafeDispatch. In
the dynamic loading column, Y/N means the defense supports loading
hardened or analyzed libraries, but not unhardened ones. 150

x

LIST OF FIGURES

Figure Page

2.1 Example C code demonstrating pointers as capabilities to read or write a
string buffer. 22

2.2 Temporal memory error examples. In (a) a pointer to deallocated heap
memory is referenced. In (b) the stack frame containing the local variable
will be deallocated when the function returns. 23

2.3 A potentially unsafe program. If the value of i is within the bounds of
buf the program will execute normally. If not, the program may crash or
overwrite unintended data. 24

2.4 Examples of upcasting and downcasting. Line 12 is a downcast (from
Child to Parent) which is always safe. Line 13 is an upcast (from Parent
to Child) is is potentially unsafe. 27

3.1 Simplified example of over approximation in static analysis. 35

3.2 Effects of flow/context sensitivity on precision. 42

3.3 Backward control-flow precision. Solid lines correspond to function calls
and dashed lines to returns from functions to their call sites. Call-sites are
singletons whereas h’s return can return to two callers. 44

3.4 CFI implementation comparison: supported control-flows (CF), reported
performance (RP), static analysis precision: forward (SAP.F) and backward
(SAP.B). Backward (SAP.B) is omitted for mechanisms that do not support
back edges. Color coding of CFI implementations: binary are blue, source-
based are green, others red. 46

3.5 Quantitative comparison: control-flows (CF), quantitative security (Q),
reported performance (RP), static analysis precision: forward (SAP.F) and
backward (SAP.B). 48

3.6 Total number of forward-edge equivalence classes when running SPEC
CPU2006 (higher is better). 56

3.7 Whisker plot of equivalence class sizes for different mechanisms when
running SPEC CPU2006. (Smaller is Better) 57

xi

Figure Page

4.1 Illustration of VTrust’s overall defense. The layer 0 defense (i.e., placing vtables

in read-only sections to protect their integrity) is deployed by modern compilers

by default, and thus provides an extra layer of defense for free. The layer 1

defense enforces virtual functions’ type at runtime. It defeats all VTable reuse

attacks, and also defeats VTable injection attacks if there are no writable code

sections. The layer 2 defense enforces the validity of vtable pointers. It defeats

VTable injection attacks even if there are writable code sections. 72

4.2 Illustration of a virtual function call Base1::vf4(), including the source code

(a), the runtime memory layout (b and c) and the executable code (d), as well as

the executable code after deploying VTrust’s defense (e). The layer 2 defense is

only necessary for applications with writable code sections. The layer 1 defense

is sufficient for most applications. 75

4.3 VTable pointer sanitization solution. Each vtable pointer will be encoded to a

vtable index consistinf of a lib idx and a local idx. A global VTable pointer

map (pointed by global vtmap) will be used to decode vtable indexes. 85

4.4 Illustration of VTrust’s workflow. The first layer of defense is implemented as a

compile-time optimization pass and a code generation step. The second layer of

defense is implemented as a link-time optimization pass. 87

4.5 Illustration of the class member function pointer issue and solution. Here, virtual

functions Base::foo1 and Base::foo2 have a same function type but different

name. We instrument an extra signature that is computed without function

name before the function body. For virtual call sites that use class member

function pointers, we compare this special signature instead of the signature

with function names. 88

4.6 VTable Building and Type Collection Algorithm (Python-style pseudocode).
Text in orange is the code we instrumented to collect type information for
virtual functions. 91

5.1 DataShield’s runtime memory layout for sensitive and non-sensitive data.
The sensitive region has a strict security policy that leads to instrumentation
overhead, and the non-sensitive region has a relaxed security policy with
minimal overhead. 104

5.2 An example the sensitivity analysis. In iteration 1, only the sensitivity of
globals and of function parameters are known. Then, the analysis applies
abstract interpretation over the function body’s instructions, discovering
new relationships and adding variables into the sensitive set. The analysis
concludes when a fixed point is reached in iteration 3. Arrows indicate that
connected boxes must be in the same set according to the DCI policy rules. 106

xii

Figure Page

5.3 Abstract interpretation transfer function for finding implicitly sensitive
variables. Other instructions simply propagate sensitivity. 108

5.4 Detailed memory layout, showing the mapping between bounds and sensi-
tive pointers using the pointer’s address. 110

6.1 Performance overhead of VTrust on SPEC CPU2006, when enabling only the

first layer of defense (virtual function type enforcement), or only the second

layer (vtable pointer sanitization). 121

6.2 Performance overhead of VTrust on Firefox, when enabling only the first layer

of defense (virtual function type enforcement), or only the second layer (vtable

pointer sanitization). 122

6.3 Performance overhead measured on two microbenchmarks when varying
the proportion of sensitive to non-sensitive data. More sensitive data leads
to higher overhead for DataShield but not for SoftBound + CETS. . . . 130

6.4 Performance overhead on SPEC CPU2006 for three non-sensitive protection
options: masking, Intel MPX, and address override prefix. 134

6.5 Performance overhead on SPEC CPU2006 isolated by protection type.
Integrity-only protects writes, confidentiality-only protects reads, and
“both” protects reads and writes. 136

xiii

ABSTRACT

Carr, Scott A. PhD, Purdue University, May 2017. Compiler-based Mitigations of
Vulnerabilities in Systems Software. Major Professor: Mathias Payer.

Systems software written in C/C++ is plagued by bugs, which attackers exploit to

gain control of systems, leak sensitive data, or perform denial-of-service attacks. This

plethora of vulnerabilities is caused by C/C++ not enforcing memory or type safety in

language by design, instead they leave security checks to the programmer.

Previous research primarily focuses on preventing control-flow hijack attacks. In

a control-flow hijack attack, the attacker manipulates a return address or function

pointer to cause code of her choosing to be executed. Abadi et al. propose Control-

Flow Integrity (CFI), to prevent such attacks, but as our CFI survey shows, CFI

mechanisms have varying degrees of precision. Researchers exploit the imprecision

in CFI implementations to evade their protection. One area of imprecision in CFI

mechanisms is virtual functions in C++ programs. Attackers can re-target virtual

function calls to other invalid functions as part of an exploit. Our work, VTrust,

provides specialized protection for C++ virtual functions with low overhead.

As CFI mechanisms improve, and are widely deployed, attackers will follow the

path of least resistance towards other attack vectors, e.g., non-control-data attacks.

In a non-control-data attack the attacker manipulates ordinary variables (not return

addresses, function pointers, etc.) to carry out the attack. Non-control-data attacks

are not prevented by CFI, because the control-flow follows a valid path in the original

program. The attack is carried out by modifying only non-control-data. To address

this emerging problem, we have developed Data Confidentiality and Integrity (DCI)

which allows the programmer to select which data types should be protected from

corruption and information leakage by the attacker.

xiv

In this dissertation, we propose that by using static analysis and runtime checks,

we can prevent attacks targeted at sensitive data with low overhead. We have

evaluated our techniques, VTrust and DCI, on the SPEC CPU2006 benchmarks,

the Firefox web browser, and the mbedTLS cryptographic library. Our results show

our implementations have lower performance overhead than other state-of-the-art

mechanisms. In our security evaluation, we have several case studies which show our

defenses mitigate publicly disclosed vulnerabilities in widely deployed software. In

future work, we plan to improve our static sensitivity analysis for DCI and investigate

new methods for automatically identifying sensitive data.

1

1 INTRODUCTION

We develop compiler-based tools that mitigate vulnerabilities in systems software.

Systems software is almost exclusively written in C/C++, and these unsafe languages

allow subtle programmer errors to become devastating vulnerabilities. Attackers

exploit these vulnerabilities to gain control of the system or steal information. Our

techniques detect when attacks occur and abort the program to stop the attack.

This section presents our problem area in the context of its challenges and existing

work. Included are our thesis statement, a summary of our contributions and an

outline of this dissertation. Note that this section omits detailed definitions of several

terms for brevity. See Chapter 2 for background information.

1.1 Securing Systems Software

The goal of our research is to prevent attackers from exploiting the endless stream

of new vulnerabilities found in systems software. Vulnerabilities are errors that an

attacker can exploit to hijack the system or leak sensitive data. Modern systems

software is written in unsafe languages such as C/C++. When writing code in unsafe

languages, the programmer is responsible for securing the code. For example, a

common operation in C programs is copying a string into a buffer, but the language

itself does not protect against the string overflowing the buffer. It is the programmer’s

responsibility to check if the buffer is large enough to hold the string.

Attackers are so successful at finding bugs in critical software that we conclude

new tools are needed to facilitate writing secure software. Examples of high-profile

vulnerabilities include Heartbleed [1], StageFright1, ShellShock2, Ghost3 and Dirty

1http://www.kb.cert.org/vuls/id/924951
2https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271
3https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0235

http://www.kb.cert.org/vuls/id/924951
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0235

2

COW4. We divide all software security tools into three broad categories: i) safe

programming languages, ii) formal verification, and iii) vulernability mitigation in

C/C++. Our work falls into the third category. We provide a high-level intuition for

the challenges and trade-offs between these categories in the next three subsections.

1.1.1 Safe Systems Programming Languages

Researchers and practitioners have developed many new safe programming lan-

guages which aim to fix the deficiencies of C/C++, (e.g., Rust [2]). Usually these

languages provide the type and memory safety5 that C/C++ do not. If we rewrote

our systems software in these safe languages, whole categories of vulnerabilities would

be eliminated. However, in the near term, manual rewriting is not a practical solution

because production-quality systems software (operating systems, web browsers, cryp-

tographic libraries, etc.) are millions of lines of code. Rewriting everything required

for a complete system requires a massive human effort. Another complication is that

safe languages often rely on virtual machines or libraries written in unsafe languages.

For example, the Java HotSpot Virtual Machine6 is written in C/C++. Notable efforts

to rewrite large pieces of systems software in safe languages include the Servo7 web

browser engine written in Rust, and Singularity OS [3] written in a dialect of C#.

Researchers have also proposed Cyclone and CCured [4, 5], which are dialects of C

that were developed the eliminate memory safety errors.

The latest C++ standard, C++14 [6], establishes new language features aimed

at making C/C++ safer. However, safe C++14 code is dramatically different from

C++ code written under the old standards. Adopting safe C++14 practices requires

rewriting code with a new standard library (i.e., the Guideline Support Library8).

In effect, C++14 defines a new language, or at least a new dialect of C++, so the

4https://dirtycow.ninja/
5Type safety and memory safety are defined in Section 2.9 and Section 2.7 respectively.
6http://openjdk.java.net/groups/hotspot/
7https://servo.org
8https://github.com/Microsoft/GSL

https://dirtycow.ninja/
http://openjdk.java.net/groups/hotspot/
https://servo.org
https://github.com/Microsoft/GSL

3

same drawbacks of other new safe languages apply. Adopting it requires manual code

rewriting and switching tools.

1.1.2 Formal Verification

Formal verification mathematically proves that software, as written in the source

language, conforms to some specification. If the specification correctly encodes the

security properties9 we desire, and the software conforms to that specification, we

conclude the software is secure10. Determining which security properties we desire, and

writing a correct specification for complicated systems software are major challenges,

thus we do not have a formal specification for our widely used systems software (OSes,

servers, web browsers, etc.).

To date, researchers have not produced a verified OS or web browser that could

widely replace the production-quality unverified alternatives, but continual progress

has been made. A prominent work in this area is seL4 [7]. It is a microkernel consisting

of around 9,000 lines of code (LoC), and is the first proven correct general purpose

OS kernel. The state of the art in OS verification is CertiKOS [8] is the first kernel

with formally proven multiprocess support. Both seL4 and CertiKOS are major

achievements, but area not comparable to the Linux Kernel in terms of functionality.

seL4 and CertiKOS are microkernels which are less than 10,000 LoC, while Linux is

over fifteen million. Directly comparing the LoC count is partly misleading, because

Linux is a monolithic kernel whereas seL4 and CertiKOS are microkernels. The

relevant difference between monolithic and microkernels is monolithic kernels include

device drivers as part of the kernel, but mircokernels do not. Even if we exclude the

drivers directory for Linux, the LoC count is still over five million. The verification

effort for the concurrency proof in CertiKOS was around two person-years, according

to the authors, and seL4 required 20 person-years. The ratio of 10,000 LoC to 20

9The exact security properties we care about vary between different applications and formal verification
techniques.
10For the system to be secure the hardware must also meet its specification.

4

person-years demonstrates the challenges in scaling up current formal verification tools

to large code bases.

Formal verification and safe programming languages are complimentary as safe

languages can be designed to facilitate proofs about programs written in the language.

1.1.3 Vulnerability Mitigation

The final common approach to combating vulnerabilities in systems software is

to stop the vulnerabilities from being exploited by an attacker. Broadly, the idea

behind this category of techniques is that we should develop automatic tools to

find the vulnerabilities or detect when attacks occur. Techniques in this category

work with the software as is, rather than requiring a rewrite in a new language or

writing a formal specification. Our research falls into this category, and our goal

is to compile a version of the program with exploit detection checks added. For

example, attackers often exploit buffer overflows, so our compiler inserts new checks

for out-of-bounds pointers into the program. These additional dynamic checks are

called runtime monitors. The runtime monitors check for suspicious program behavior

and abort the program if an attack is detected (before the attacker can hijack the

system or leak sensitive data). The most notable work in this category is SoftBound

+ CETS [9, 10]. Importantly, these techniques work automatically, with little or

no human effort required, however, the additional instructions needed for runtime

monitoring impose performance overhead. We will describe our techniques which

make use of compiler-inserted runtime monitors in detail throughout the remainder of

this dissertation.

Static analysis is complimentary to runtime monitors. Most techniques that insert

runtime monitors also include a static analysis component to determine statically that

some subset of the code is safe (and thus does not need a runtime monitor).

Researchers have also proposed purely static bug finders that do not include a

runtime component. In contrast to formal verification which aims to prove the entire

5

program safe, static analyzers typically examine smaller pieces of the program (e.g.,

individual lines of code or functions). An example tool is µcheck [11], which is a

framework for building static checking tools using a micro-grammar – a subset of the

language specification. These checkers look for problematic patterns in the code, but

do not show that the entire program is safe. The program may contain other bugs not

covered by the checkers’ set of patterns.

1.2 Challenges

The primary challenge that we face is that users of C/C++ demand high perfor-

mance, but adding the security guarantees missing from C/C++ (i.e., memory safety

and type safety) imposes overhead. Our security mechanisms insert runtime monitors

into programs to detect incorrect behavior that may have been caused by an attacker.

Example monitors include checking: if a write overflows a buffer (spatial memory

safety), if a pointer points to deallocated memory (temporal memory safety), if a

pointer points to an object of the incorrect type (type safety) or if a return address

has been overwritten (control-flow integrity).

If we could statically determine that a program is safe (or that it is unsafe due

to a list of identified bugs), then we would have secure systems software. However,

in the general case, every security property we are interested in (e.g., memory safety,

type safety, and control-flow integrity) cannot be statically determined for an arbi-

trary C/C++ program. For example, which function a pointer points to is statically

undecidable in general, so we cannot statically determine the exact control-flow graph

(CFG) of a C/C++ program that uses function pointers. Instead, static analyzers

might over-approximate the true CFG, and consider the function pointer to point

to any function of a compatible type. Attackers can exploit this over-approximation.

While this example concerns a very specific problem, the pattern emerges when trying

to determine any interesting security property about an arbitrary C/C++ program,

without executing the program.

6

Scalability is another major challenge. Since the systems software we care about

consists of thousands or millions of LoC, our tools must work automatically. The

programmer effort to adopt our tools must be constant, not a function of the number

of LoC in the program. Since systems software is dependent on C/C++ ecosystem, we

cannot change the programming languages, operating system interface, or Application

Binary Interface (ABI) [12] to ensure compatibility with other tools and libraries.

1.3 Attacker Model

We assume that the original program is benign, but may contain bugs. More

precisely, the original application should not leak sensitive information or crash when

given valid input not controlled by an attacker. However, we assume that the attacker

can construct malicious input, which exploits bugs in the program, allowing her to

write or read any memory that the program can legally read or write. The operating

system is in the Trusted Computing Base (TCB), so we assume virtual memory page

permissions are enforced. These permissions allow us to designate a range of memory

addresses as being readable, writable, or executable (or some combination of those

three). Unless stated otherwise, we assume code is not writable [13], so the attacker

cannot perform a code injection attack.

We assume the attacker may make multiple attempts at compromising our system,

meaning we cannot rely on randomization [14]. However, Address Space Layout

Randomization (ASLR) [15], which randomly rearranges objects in memory for each

execution, is complimentary to our techniques, offering defense in depth.

1.4 Thesis Statement

This dissertation presents our techniques which provide targeted defense for sen-

sitive data in C/C++ applications. Our objective is to recompile existing C/C++

programs with additional security monitors to detect attacks before the attacker can

leak confidential information or take control of the system.

7

The thesis statement is:

Using compiler-based static analysis and runtime monitors, we can strongly

protect critical data in systems software that are left unprotected by existing

low overhead defenses.

Our key insight is that not all data are equally critical. Sensitive data like encryption

keys, authentication tokens, and passwords can be used to impersonate the system or

gain privileges, whereas most other data in a program is less useful to the attacker.

Code-pointers (return addresses, function pointers, jump targets) are also targeted by

attackers to change the control-flow of the program. We have designed our mechanisms

according to this selective protection principle. Previous approaches which enforce a

uniform policy for all data (critical and non-critical) lead to high overhead [16]. This

has ruled out their widespread deployment. In contrast, with our techniques we can

strongly and completely protect critical data only at low overhead, allowing us to

secure systems with minimal performance impact.

Existing low overhead defenses provide either incomplete or probabilistic protection.

In contrast, our tools catch all attacks target at sensitive data under our threat model,

but may have false positives in pathological programs. For example, C programs

rarely use pointer arithmetic to move a pointer between fields of a struct. Such

programs are non-portable across architectures (and therefore technically violate the

C standard [17]), but can execute successfully if the programmer is careful and knows

the target architecture. This technique violates our memory safety policy as described

in Section 2.7, causing a false alarm – false in the sense that this is the programmer’s

intended behavior, not an attack.

1.5 Contributions

The contributions of this dissertation are the design, implementation, and eval-

uation of targeted protection mechanisms for systems software that protect critical

data at low overhead. Our survey of existing mechanisms shows that previously used

8

metrics do not effectively distinguish the strength of previous works, and that new

techniques are needed to defend emerging attack vectors. We have designed and

implemented two such techniques providing targeted protection for sensitive data

and vtables. We evaluate our mechanisms’ performance on a variety of benchmarks,

present detailed case studies, and discuss their security effectiveness. Specifically our

contributions are:

1. Systematization and evaluation of prior work in Control-flow Integrity (CFI),

assessing the performance of the mechanisms on the same hardware platform

for the first time, qualitatively and quantitatively comparing the mechanisms’

provided security, and identifying cross-cutting concerns and future directions

for CFI research.

2. Design and implementation of VTrust, a CFI defense mechanism targeted at

preventing vtable-based attacks in C++ programs.

(a) Separate compilation support to protect applications and libraries, increas-

ing our mechanism’s practicality.

(b) Reduced overhead compared to similar state-of-the-art mechanisms, always

less than 8% across our benchmarks.

(c) Security case studies showing VTrust mitigates vulnerabilities found in

Firefox, software deployed to millions of users, and state-of-the-art vtable

attacks.

3. Design of a new security policy Data Confidentiality and Integrity (DCI) which

allows the programmer to select which data types are protected

(a) Open-source prototype implementation of DCI (DataShield) based on the

LLVM compiler infrastructure

(b) Case study of applying DataShield to a production quality TLS/SSL library

(mbedTLS), showing our technique is applicable to large code bases

9

(c) Drop-in replacement C/C++ shared standard libraries that are instrumented

by DataShield, which allow the user to link programs instrumented by

DataShield with their system libraries. Uninstrumented programs can use

the instrumented libraries as well.

(d) Security evaluation showing DCI mitigates a publicly disclosed vulnerability

in mbedTLS by detecting a proof-of-concept attack

1.6 Publications

This dissertation draws from our projects which have appeared in publications

at several high-quality security conferences and journals. Our CFI survey paper will

appear in ACM Computing Surveys 2018 [18]. VTrust was published in the Internet

Society Network and Distributed System Security Symposium (NDSS) 2016 [19].

DCI [20] will appear in ACM Asia Conference on Computer and Communication

Security (AsiaCCS) 2017, and we presented a poster on the same topic at IEEE

Symposium on Security and Privacy 2015 [21].

1.7 Summary and Outline

In this dissertation, we present the design, implementation, and evaluation of our

defense mechanisms which automatically protect critical data in C/C++ programs.

Protecting critical data is complicated by C/C++’s lack of type and memory safety,

making it difficult to efficiently prevent programmer errors from becoming security

vulnerabilities. Many software security approaches have been developed including new

safe languages, formal verification, runtime monitors, static bug finding, and auditing.

We developed compiler-based approaches which combine static analysis with runtime

monitors to provide strong always-on protection to C/C++ programs.

The remainder of this dissertation is laid out as follows. In Chapter 2, we provide

the relevant background information necessary to understand the details of our defense

mechanisms. Detailed discussion and results from our CFI survey appears in Chapter 3.

10

We describe the design and implementation of VTrust in detail in Chapter 4 and

in Chapter 5 we do the same for DCI. In Chapter 6, we evaluate our mechanisms’

security and performance. We discuss our future work in Chapter 7 and related work

in Chapter 8. In Chapter 9, we conclude this dissertation.

11

2 SECURITY BACKGROUND

In this chapter, we present the necessary background information to understand the

remainder of this dissertation. First, we describe the primary attack vectors adversaries

use to hijack an application or corrupt/leak sensitive data. Next, we discuss defenses

that are already deployed across modern desktops and servers. These defenses do

not prevent all attacks, but we assume these baseline protections are in place on

the systems we are protecting. For context, we summarize categories of academic

research in defense techniques and provide important examples of each category.

Next, we transition towards technical details that are relevant to systems software

security research. In particular, we discuss the aspects of the C/C++ programming

languages [6,17] which lead to insecure code or provide targets to attackers. The safety

of a C/C++ program is left to the developer, with the language favoring flexibility and

performance over correctness guarantees. Specifically we describe manual memory

management, the difficulties in analyzing C/C++, Just in Time Compilation (JIT),

and dynamic dispatch. Next, we define the most common security properties in

security research. They are Control-Flow Integrity (CFI), memory safety (spatial and

temporal), and type safety. With the discussion of each property, we include example

tools that enforce the property, and a high-level intuition of how the mechanisms

work.

2.1 Attack Vectors

Attackers have developed many attack types against C/C++ applications. The

broadest categories of attacks are control-flow hijack attacks and non-control-data

attacks. We also describe vtable attacks, which are a specialized control-flow hijack

attack.

12

2.1.1 Control-Flow Hijack Attacks

The goal of a control-flow hijack attack is to divert the program execution’s

control-flow from the programmer’s intended control-flow. The common examples of

control-flow hijack attacks include stack smashing, code injection, and code reuse.

In a stack smashing attack, the attacker uses a buffer overflow on the stack to

overwrite a return address stored on the stack with her chosen value. When the

function returns, the execution will jump to the attacker-chosen instruction. Given

that the attacker can direct execution to her chosen instruction, the next issue is

determining which instruction the attacker wants to execute.

If the attacker can write to executable memory, she may perform a code injection

attack. In a code injection attack, the attacker inserts code into the running program

and jumps to the inserted code.

Modern systems employ code injection defenses (e.g., DEP). In this case the attack

must reuse existing code, a so-called code reuse attack. For example, the attacker

may redirect a call to a library function (e.g., system) in a code reuse attack called a

return-to-libc attack. Or the attacker may stitch together sequences of instructions

ending with return instructions in a return-oriented-programming (ROP) attack.

Other than return addresses, attackers often target function pointers. If the

attacker can overwrite the value of a function pointer and that function pointer is

invoked, she can dictate the control-flow of the program.

2.1.2 VTable Attacks

Several specialized attacks have been developed for vtables in C++. A vtable

is an array of function pointers which are used to determine the target function of

a virtual function call at runtime. See Section 2.5.4 for details. Broadly there are

two categories of attacks, vtable injection and vtable corruption. The distinction

is that vtable injection attacks create new vtables that did not exist in the original

program, while vtable corruption reuses existing vtables. To change the vtable that

13

will be used to dispatch a virtual function call, the attacker changes the object’s vtable

pointer to point to her chosen vtable. Alternatively to changing the vtable pointer

the attacker maybe overwrite the vtable itself. However, vtable corruption is rare as

modern compilers store vtables in read-only memory. Attackers have discovered that

the program loader may copy vtables to writable memory when classes with virtual

functions are defined in multiple modules [22]. The most notable vtable attack is

Counterfeit Object-oriented Programming (COOP) [23], which performs arbitrary

computation by chaining C++ virtual calls. A detailed discussion of vtable attacks

can be found in Section 4.3.2.

2.2 Non-Control-Data Attacks

Non-control-data attacks are when the attacker corrupts or leaks information in

the program without changing the program’s intended control-flow. These non-control-

data attacks can be as devastating as control-flow hijack attacks [24]. The HeartBleed

Bug [1] in OpenSSL is an example of non-control-data attack that could be used to

leak information. One way of exploiting the HeartBleed Bug is to send a malicious

packet to the server where the length field of the message sent is greater than the

actual message. This causes the server to echo back to original message plus whatever

data happened to be next to the message packet in the server’s memory. For a detailed

discussion of non-control-data attacks please see Section 5.3.3

2.3 Widely Deployed Defenses

Severally widely deployed mechanism have been developed, but attackers have

learned how to bypass them. Most modern desktop/server systems have stack ca-

naries [25], Data Execution Prevention (DEP) [26], and Address Space Layout Ran-

domization (ASLR) [15] enabled.

Stack canaries are values (randomly chosen at program startup) that are placed

below each return address on the stack. We will call the randomly chosen value the

14

expected value. It is stored in a protected location that the attacker cannot corrupt.

Before each function return, the canary value on the stack is compared to the expected

value. If the values do not match, this indicates an attacker has overwritten the stack.

Stack canaries prevent stack smashing attacks where an attacker uses a continuous

buffer overflow on the stack to overwrite the return address.

DEP uses page permissions to prevent code injection attacks. Page permissions

are an operating system feature that controls whether a process can read, write, or

execute a given chunk of memory (a page). DEP ensures that no page is both writable

and executable at the same time so any new data the attacker may write into the

program’s memory will not be executable. Therefore, DEP prevents code injection

attacks. Page permissions are used by other defense mechanisms to prevent an attacker

from overwriting sensitive data. A commonly used technique is to allocate a protected

page that is only made writable when the mechanism needs to update the data on

the page, but is made read-only when the application is executing. This prevents the

attacker from exploiting the application to overwrite the protected page’s data.

ASLR is a probabilistic technique that dynamically changes the address of objects

in memory on a per-execution basis. Under ASLR, the addresses of libraries, code,

globals, the top of the stack, and heap will be placed at randomly determined addresses.

This stops the attacker from knowing beforehand what the exact address of some

object will be based on prior executions. ASLR does not achieve a purely random

memory layout in practice. For example, if an attacker can leak the address of a

C standard library (libc) function, she can calculate the address of any other libc

function using the offset between the same two functions on her own system (assuming

the attacked system and the attackers system use the same library version). Due to

information leaks, ASLR does not completely defeat code reuse attacks, including

return-to-libc and ROP, but makes them more difficult.

While these mechanisms have been widely deployed, they do not prevent all attacks.

Instead, they make attacks more difficult. Accordingly, attackers and defenders are

actively researching new techniques in an attempt to win the security arms race.

15

2.4 Defense Techniques Research

Many defense techniques have been proposed by software security researchers and

these techniques broadly fall into the categories static analysis, runtime monitors, and

logging.

2.4.1 Static Bug Finding

Static bug finding tools examine the program program source code without com-

piling and running it. In the context of security, these tools typically look for bugs

that an attacker could exploit. As mentioned in Section 2.5, static analysis of C/C++

is difficult because of lack of type and memory safety and pointer aliasing. As such,

many analysis tools are limited to look for patterns in the code that indicate there

may be a bug. Stronger static analyses include symbolic execution, model checking,

and formal verification. An interesting direction for future work is semi-static methods

– methods that augment static analysis with some form of dynamic program execution.

For example, Driller [27] combines symbolic execution with fuzzing (i.e., dynamically

executing and testing a program on many automatically generated inputs).

The primary drawback of bug finding tools is that they require the programmer

to manually fix the bug once it has been found. Correctly fixing the bug, without

introducing new bugs can be difficult in complex software. However, automated

repair, combining static bug finding with automatic program rewriting, is an emerging

research topic [28].

2.4.2 Runtime Monitors

In contrast to static bug finding tools which never execute the program, runtime

monitors are dynamic. They insert new instructions into the program to maintain and

check metadata. When the program executes, failed checks are evidence of an attack.

Examples of checks performed by runtime monitors include array bounds checking,

16

checks if a pointer points to allocated memory, and type cast verification. All the

mechanisms discussed in Section 2.8, in addition to our work, fall into this category.

The main drawback of runtime monitors is that the additional instructions impose

performance overhead. However, runtime monitors can check for dynamic program

states which cannot be determined statically. Also, tools that insert runtime monitors

automatically can be utilized with minimal programmer effort. Runtime monitors

typically abort the program when the check fails (i.e., an attack or other malicious

condition is detected).

2.4.3 Logging and Auditing

Logging is another form of runtime defense, but instead of having the criteria to

determine if an attack has occurred being built into the program, as in a runtime

monitor, security relevant data is logged and later analyzed (or audited) off-line. A

canonical example of logging is taint or provenance tracking where data is marked

with a tag indicating its origin [29]. For example in macOS files downloaded through

a web browser are marked as being downloaded from the internet and when they are

opened a warning is displayed to the user. Logging mechanisms do not prevent the

attack when it occurs, but can detect a wider variety of attacks as a human analyst

determines if an attack occurred. Another example of logging are Intrusion Detection

Systems (IDS), which monitor network traffic [30] or collect performance metrics from

a host [31] to scan for malicious behavior.

2.5 Security Properties of C/C++

C/C++ are systems programming languages, meaning that they are designed for

programming software such as performance critical code, operating systems, web

browsers, web servers, and cryptographic libraries. C/C++ give the programmer

precise control over resources and memory used by the program. For example, C/C++

programmers may carefully optimize the memory layout of data structures for space

17

efficiency, and precisely control when memory is allocated, deallocated, and initialized

for performance efficiency.

However, the low-level control provided by C/C++ comes with drawbacks. The

language specifications and compilers do not prevent errors like writing past the end of

a buffer. Nothing prevents a programmer from dereferencing a pointer to deallocated

memory, freeing the same memory twice, or reading uninitialized memory. Without

a strong type system, it is up to the programmer to ensure type casts are correct.

For example, a source of errors in C++ is casting from parent class to child class

(downcasting). However, this is unsafe because a parent class may have many child

classes and the code may cast to the incorrect child class.

2.5.1 Manual Memory Management

In C, manual memory management for the heap is performed as follows. The

programmer requests a number of bytes of memory from the operating system using

malloc, calloc, or realloc and releases a block of memory by passing a pointer to

the beginning of the block to free. The program can request additional memory on

the stack with alloca, which is automatically deallocated when the function returns.

In C++ the new keyword is roughly equivalent to malloc, and delete is roughly

equivalent to free. C++’s constructors and destructors can automatically perform

actions when an object is allocated or deallocated.

Not all memory objects are manually created and destroyed by the programmer.

Instructions for allocating a stack frame, to hold a function’s local variables, and

deallocating the stack frame are created by the compiler. Stack frames are created at

the beginning of each function call and destroyed before each function returns. Note

that compilers can optimize tail-recursive calls to reuse stack frames. The program

loader maps global variables into the program’s memory space when the program

starts or a new library is loaded. The loader also maps the program’s binary code

into memory.

18

2.5.2 Analysis Challenges

C/C++ programs are challenging to analyze due to separate compilation, pointer

aliasing, and lack of type and memory safety.

Separate compilation means that libraries and applications are compiled separately.

Often in C/C++ even submodules of the same application/library are compiled

separately. Separate compilation prevents security tools from employing whole program

analysis. On most systems there is an installed binary version of the C/C++ standard

libraries shared among the system’s applications. This presents a challenge to security

mechanisms that insert runtime monitors as the system libraries will be an attack

surface if they are unmodified.

It is common in C/C++ programs for many pointers to point to the same object.

This is called pointer aliasing. Without knowing all aliases, an analyzer cannot

accurately track the state of the pointed-to object, because the object may have

been changed through an unknown alias. For objects that do not escape the current

function, the analyzer can find all aliases to the local object, but for objects that

escape, alias analysis is much more difficult.

Another analysis issue is that the lack of type and memory safety means that

knowing what type of a object a pointer points to or if a pointer points to a valid

object is impossible statically in the general case. For example, it is valid for a void*

pointer to point to an object of any type. However, to use the pointer, it must be

cast to another type. This cast from void* to another type is unchecked in C, so an

analyzer cannot assume pointers point to an object of the correct type in general. It is

also very common to create dangling pointers, pointers that point to invalid memory.

This can be because the pointed-to object has been freed, or the pointer to an array

element has been incremented past the last element of the array.

19

2.5.3 Just-In-Time Compilation

Web browsers are among the most widely used and often attacked C++ programs.

Accordingly, web browsers are of particular interest to software security researchers,

but browsers are even more difficult to analyze than typical C/C++ programs. Modern

browsers are millions of lines of code (LoC) and include a JavaScript compiler that

performs just-in-time compilation (JIT) of JavaScript code. The reason for imple-

menting JIT is that the generated code is more efficient than interpreting the original

JavaScript. Code generated by the JIT compiler opens another attack surface, as

the attacker can tamper with the JIT’s generated code. Since the JavaScript code

is downloaded from websites the browser visits, the JavaScript code is untrusted

and must be isolated from the browser’s internal data structures. Designing defense

mechanisms that can generically protect any JIT compiler is an unsolved problem.

However, RockJIT [32] (which is specific to Google’s V8 JavaScript engine) suggests

this is a promising direction for future research.

2.5.4 Dynamic Dispatch

Indirect control-flow transfers occur frequently in C/C++ programs, and are relevant

to security as after an indirect control-flow transfer the next instruction to be executed

cannot be determined statically in general. To make our discussion concrete, we

will use the names of x86 instructions, but other desktop/server architectures have

analogous instructions. We classify control-flow transfers on the basis of direction.

Backward transfers are returns from a function. Forward transfers are function calls.

Forward transfers to an address that is not the beginning of a function are possible,

but are not relevant to this dissertation. For example, switch statements can be

implemented using jumps which are a type of forward control-flow transfer.

The most frequent kind of indirect control-flow transfer is the return instruction.

A return instruction (ret) executes at the of end of each function, and ret transfers

execution to next instruction after the instruction that called the returning function.

20

Function pointers allow C/C++ programmers to create variables that point to,

and call, dynamically determined functions. Calling a function through a function

pointer is typically compiled to a call instruction (call) with a computed address,

whereas a normal function call is compiled to a call with a fixed address. While this

dissertation and our research are architecture-agnostic (except when explicitly stated

otherwise), instruction set architectures (ISA) that have no instructions analogous to

call, and ret are out of scope, except when discussed in our CFI survey, Chapter 3.

C++ introduces a new type of function call not directly supported by C, namely

virtual function calls. In C++, programmers can create a class which contains any

number of members. Members can either be data or functions that manipulate the

class’s data. Classes may inherit the members of another class. The class that inherits

is called the child class and the class being inherited from is called the parent. To allow

a parent class’s member function to be overridden, the programmer marks the function

virtual. Classes with virtual member functions are call polymorphic classes. Every

instantiated object of a polymorphic class has special pointer (a vtable pointer) which

points to a table of virtual member functions (a vtable). When a virtual member

function is called at runtime, the target function is determined by examining the

vtable pointed to by the object’s vtable pointer. This is called dynamic dispatch.

In Chapter 4, Figure 4.2 shows a detailed dynamic dispatch example.

2.6 Control-Flow Integrity

Control-Flow Integrity is a very active research topic [33–46]. CFI mechanisms

generally combine a static analysis to determine the program’s Control-Flow Graph

(CFG) with runtime monitors to ensure the program’s execution does not deviate

from this CFG. The aim of CFI is to prevent control-flow hijacking attacks.

The simplest CFI implementations conceptually group all the possible targets

of an indirect call and assign the group of targets a label. In the binary, this label

is inserted before each target function in the group. A check is inserted before the

21

indirect call to determine if the dynamically calculated target has the matching label.

Our survey in Chapter 3 discusses these mechanisms in detail.

2.7 Memory Safety

We described the mechanics of manual memory management for C/C++ in Sec-

tion 2.5.1, but in this section we describe issues that arise from using these mechanics

incorrectly and unsafely. First, we will give a high-level intuition for the different

kinds of memory safety errors, then we will discuss the errors in depth throughout the

remainder of this section.

A program is memory safe if every memory read/write in the program satisfies the

following. Given pointer P , which was most recently assigned to point to object O:

1. Writes that dereference P only write O.

2. Reads that dereference P only read data that had been written to O – not

uninitialized data.

3. O has not been deallocated.

Otherwise, the read/write through pointer P is a memory error.

There are two categories of memory errors, spatial and temporal. Spatial memory

errors occur when a pointer is dereferenced outside the bounds of the intended

object. For example, if a programmer requests an allocation of 100 bytes (i.e., buf =

malloc(100)) and attempts to read the 101st byte (i.e., buf[100]), that is a spatial

memory error. Spatial memory errors are often buffer overflows similar to the above

example. Temporal errors occur when a pointer to a deallocated object is dereferenced.

Use-after-free is the canonical example of a temporal memory error, but double free

(attempting to free the same memory object twice), and reading uninitialized memory

are also considered temporal memory errors. These errors typically occur when

memory is deallocated in multiple code locations in a program, and the programmer

makes an incorrect assumption about where an object will be deallocated.

22

1 void fn() {
2 char* buf = malloc (6);
3 strcpy(buf , "hello");
4 char* ptr = buf+2;
5 ...
6 }

Pointer
Base
End

buf
Pointer
Base
End

ptr

h

e

l

l

o

\0

Heap

Figure 2.1. Example C code demonstrating pointers as capabilities to read or write a
string buffer.

2.7.1 Spatial Memory Safety

A security-centric view of spatial memory safety is that pointers are capabilities

to read or write some memory object [47]. Conceptually, every pointer is a 3-tuple,

〈pointer, base, end〉, where pointer is the current value of the pointer, base is the

lowest address the pointer is allowed to point to, and end is the highest. A simple

example is show in Figure 2.1. Here, both buf and ptr have the capability to read the

entire buffer allocated by malloc, but the current value of the pointers are different.

An alternative definition of a spatial memory error is any error that would not

occur if objects were infinitely far apart in memory [47]. C/C++ programs should not

rely on the space between objects in memory because the spacing is under the control

of the compiler and the memory allocator. In effect, any program that relies on the

offset between two distinct objects is unsafe.

2.7.2 Temporal Memory Safety

Temporal memory safety errors are errors which occur because the programmer

made an incorrect assumption – that memory has not been deallocated, or is initialized.

In Figure 2.2, two examples of temporal memory errors are shown. In Figure 2.2a,

there is an error on line 4, because the memory pointed to by x has been deallocated.

In Figure 2.2b, the variable y is allocated on the stack, so when the function f returns,

23

1 char *x = malloc (10);
2 x[3] = ’a’;
3 free(x);
4 x[0] = ’b’; // error

(a) A use-after-free error on the heap.

1 char* f() {
2 char y = ’f’;
3 return &y;
4 }
5 void g() {
6 char z = *(f()); // error
7 }

(b) Return of stack local variable.

Figure 2.2. Temporal memory error examples. In (a) a pointer to deallocated heap
memory is referenced. In (b) the stack frame containing the local variable will be
deallocated when the function returns.

y will be automatically deallocated. The returned pointer will point to deallocated

memory and dereferencing this pointer (line 6) is a temporal safety violation.

Temporal memory safety can be implemented with a capability, where each ca-

pability contains an allocation ID. The allocation ID is stored in both the capability

associated with the pointer and the allocated object. Then the mechanism inserts a

check before each pointer dereference to determine if the allocation ID of the capability

and the allocation ID of the pointed-to object match. CETS [10] uses this scheme,

but calls the allocation ID stored in the object the “lock” and the allocation ID stored

in the capability the “key.”

2.8 Memory Safety Enforcement Mechanisms

Researchers have proposed many mechanisms to detect memory errors in C/C++

applications. Most approaches combine static analysis with runtime checks, because

statically determining if a C/C++ program is memory safe is impossible in general. In

the example in Figure 2.3a, the function input can return any value. For instance,

input might return a user entered value. We cannot determine if line 3 is safe

statically, however, if we insert runtime checks, as in Figure 2.3b, we can be sure the

program is now memory safe. At a high-level, it is the goal of many mechanisms to

transform Figure 2.3a into Figure 2.3b automatically.

24

1 char* buf = malloc (10);
2 unsigned int i = input ();
3 buf[i] = ’a’; // unsafe
4 ...

(a) An unsafe program.

1 char* buf = malloc (10);
2 unsigned int i = input ();
3 if (i < 9) {
4 buf[i] = ’a’; // safe
5 } else {
6 abort ();
7 }
8 ...

(b) The program from (a) rewritten to be mem-
ory safe.

Figure 2.3. A potentially unsafe program. If the value of i is within the bounds of
buf the program will execute normally. If not, the program may crash or overwrite
unintended data.

The preceding example was contrived because the size of the array (buf) was fixed,

so it was obvious how to rewrite the code to make it statically safe. Usually, for

heap allocations the mechanism cannot statically determine the size of an array so it

records the array’s size at runtime. Sizes are recorded for any memory object accessed

through pointers (e.g., arrays, structs, class objects, etc.). The size can be encoded as

a capability as described in Section 2.7.1. The data about objects (in any format) is

referred to generically as metadata in the literature. Most mechanisms maintain a

mapping from pointers to the associated metadata.

2.8.1 Memory Safety Using Pointer Checking

The main two approaches for mapping pointers to metadata are fat pointers and

disjoint metadata. Fat pointers add data to the existing pointer encoding [48]. For

example, on a 32-bit system a pointer is encoded in 4 bytes, but a fat pointer may be

8 or 16 bytes, to encode the metadata for that pointer. The main drawback of this

approach is that it changes object layout and breaks compatibility with separately

compiled binaries. For disjoint metadata the format of a pointer is unchanged and

metadata is stored in a separate data structure. Often the address of a pointer maps

25

to some entry in the metadata data structure. For a complete discussion on the

metadata schemes see Nagarakatte et al. [16].

For enforcement mechanisms that ensure spatial safety based on pointer checking,

the metadata for a given pointer is typically the base address and last address of the

pointed-to object – which along with the pointer’s value forms the capability tuple

discussed in Section 2.7.1. This results in a memory overhead of two times the size of

a pointer per pointer. For temporal safety mechanisms based on pointer checking the

metadata is usually an allocation ID tracked for both the object itself and the pointer

which points to the object. The metadata is typically created on object allocation,

deleted on object deallocation, and propagated on pointer assignment.

2.8.2 Memory Safety Using Object Alignment

Alternatively to per-pointer metadata, mechanisms may use object padding or

alignment to track the size of objects implicitly [49,50]. For example, a mechanism

could create various regions of fixed-sized objects and round-up allocations to the next

size category.

Aligned regions can also be used for temporal safety. Objects of the same type

have the same size, so if the mechanisms create an allocation region for each type it

naturally aligns the objects [51] to known offsets. This way if memory is deallocated

and reused an object of the same type will be reallocated to a given location. This

mitigates use-after-free errors because the layout of the old object and the reallocated

object are the same.

2.8.3 Protecting Metadata from Attackers

For mechanisms that are designed to be actively running in production, and

thus potentially attacked, we have to ensure that the attacker does not tamper

with the mechanism’s metadata. For example, if the attacker could overwrite a

pointer’s capability, then she could cause a buffer overflow which would go undetected.

26

Mechanisms that enforce memory safety for every pointer protect the metadata

automatically – the metadata should never be in bounds of any pointer defined in

the original program, so can never be read or written by these pointers. However,

mechanisms that enforce other security properties (e.g., partial memory safety) must

protect their metadata through other means. They may maintain metadata in memory

pages with read-only permissions, or isolate the metadata from the application with

Software Fault Isolation (SFI) [52].

2.8.4 Important Memory Safety Mechanisms

The notable memory safety enforcement works include CCured [5], Cyclone [4],

and SoftBound+CETS [9,10]. Cyclone replaces manual memory management with

region-based memory management, which statically defines the lifetime of objects in

a given region. Both CCured and Cyclone classify pointers based on if their usage.

So-called “safe” pointers are those that can be statically proven to be safe. Other

pointers are unsafe. While CCured and Cyclone, define new C dialects, SoftBound

works on unmodified C programs. The common theme among these mechanisms is

that they identify pointers which are used in an unsafe way – typically this means the

pointer is used in non-constant pointer arithmetic. The mechanisms track metadata

about these unsafe pointers, and insert checks to determine if the pointer still points

to a valid memory object when it is referenced.

2.9 Type Safety

A program that is type safe if whenever a pointer is dereferenced, the pointer and

the pointed-to object are of compatible types. A type error occurs when a pointer

of type T is dereferenced when the pointed to object is of an incompatible type U .

Type safety in C is complicated by C programmers’ habit of implementing ad-hoc

inheritance by abusing struct layout rules, and C’s admittance of void* pointers

pointing to objects of any type. In C++, the meaning of “incompatible type” is also

27

1 class Parent {};
2 class ChildA : Parent {
3 int ID;
4 };
5 class ChildB : Parent {
6 float precision;
7 };
8
9 ChildA *ca = new ChildA ();

10 Parent *p = new Parent ();
11
12 Parent* p2 = static_cast <Parent*>(ca); // safe
13 ChildA* c2 = static_cast <ChildA*>(p); // unsafe

Figure 2.4. Examples of upcasting and downcasting. Line 12 is a downcast (from
Child to Parent) which is always safe. Line 13 is an upcast (from Parent to Child) is
is potentially unsafe.

governed by the type inheritance rules, as it is legal to dereference a pointer of a

parent class type when the pointer points to an object of a child class type. Casting

a pointer from child to parent type is called upcasting and is always safe. Casting

a pointer from parent to child is called downcasting and can be unsafe if the parent

class has multiple child classes and the true type of the child object is unknown.

An example of a type safety violation is shown in Figure 2.4. On Line 12 this

cast is an upcast and is guaranteed to be safe. Since ChildA inherits Parent it is

safe to cast ChildA pointers to Parent. On line 13 the cast is a downcast and is

unsafe. Parent pointers may point to objects of any of the following types: Parent,

ChildA, or ChildB. Parent pointers cannot be safely cast to ChildA pointers because

the pointed to object might be of type Parent or ChildB which would cause the type

of the pointer and the type of the pointed to object to mismatch (i.e., a type safety

violation).

28

2.9.1 Type Safety Enforcement Mechanisms

The important works in this area are (in chronological order) UBSan [53], CaVer [54],

and TypeSan [55]. Unfortunately, all these approaches are incomplete – they are

not able to verify all casts in their evaluated programs. In particular, CaVer and

TypeSan identify the type of an object at its allocation site, and their results show

that some allocations are missed, leading to missing type information and unverified

casts. However, the CaVer paper showed that these can be useful bug finding tools as

the authors discovered two new vulnerabilities in Firefox.

2.10 Security Background Summary

Despite the best efforts of many researchers, new vulnerabilities are constantly

being discovered in systems software. C/C++ present challenges to software security

researchers and developers in that these languages do not provide type or memory

safety guarantees. Widely used defenses (stack canaries, DEP, and ASLR) make

executing these attacks more difficult but all deployed defenses can be bypassed.

Common attack vectors control-flow hijacking using indirect transfers and non-control-

data attacks. Software security researchers often combine static analysis and runtime

monitors to try to detect and prevent these attacks, but the additional runtime monitor

instructions lead to performance overhead. However, we argue that this approach

provides strong defense with minimal required programmer effort, and our work aims

to reduce these sources of overhead.

29

3 CONTROL-FLOW INTEGRITY

3.1 Abstract

Memory corruption errors in C/C++ programs remain the most common source

of security vulnerabilities in today’s systems. Control-flow hijacking attacks exploit

memory corruption vulnerabilities to divert program execution away from the intended

control flow. Researchers have spent more than a decade studying and refining defenses

based on Control-Flow Integrity (CFI), and this technique is now integrated into

several production compilers. However, so far no study has systematically compared

the various proposed CFI mechanisms, nor is there any protocol on how to compare

such mechanisms.

We compare a broad range of CFI mechanisms using a unified nomenclature based

on (i) a qualitative discussion of the conceptual security guarantees, (ii) a quantitative

security evaluation, and (iii) an empirical evaluation of their performance in the same

test environment. For each mechanism, we evaluate (i) protected types of control-

flow transfers, (ii) the precision of the protection for forward and backward edges.

For open-source compiler-based implementations, we additionally evaluate (iii) the

generated equivalence classes and target sets, and (iv) the runtime performance.

3.2 Introduction

Systems programming languages such as C and C++ give programmers a high

degree of freedom to optimize and control how their code uses available resources.

While this facilitates the construction of highly efficient programs, requiring the

programmer to manually manage memory and observe typing rules leads to security

vulnerabilities in practice. Memory corruptions, such as buffer overflows, are routinely

30

exploited by attackers. Despite significant research into exploit mitigations, very few

of these mitigations have entered practice [56]. The combination of three such defenses,

(i) Address Space Layout Randomization (ASLR) [15], (ii) stack canaries [26], and

(iii) Data Execution Prevention (DEP) [13] protects against code-injection attacks, but

are unable to fully prevent code-reuse attacks. Modern exploits use Return-Oriented

Programming (ROP) or variants thereof to bypass currently deployed defenses and

divert the control flow to a malicious payload. Common objectives of such payloads

include arbitrary code execution, privilege escalation, and exfiltration of sensitive

information.

The goal of Control-Flow Integrity (CFI) [33] is to restrict the set of possible

control-flow transfers to those that are strictly required for correct program execution.

This prevents code-reuse techniques such as ROP from working because they would

cause the program to execute control-flow transfers which are illegal under CFI.

Conceptually, most CFI mechanisms follow a two-phase process. An analysis phase

constructs the Control-Flow Graph (CFG) which approximates the set of legitimate

control-flow transfers. This CFG is then used at runtime by an enforcement component

to ensure that all executed branches correspond to an edge in the CFG.

During the analysis phase, the CFG is computed by analyzing either the source

code or binary of a given program. In either case, the limitations of static program

analysis lead to an over-approximation of the control-flow transfers that can actually

take place at runtime. This over-approximation limits the security of the enforced

CFI policy because some non-essential edges are included in the CFG.

The enforcement phase ensures that control-flow transfers which are potentially

controlled by an attacker, i.e., those whose targets are computed at runtime, such as

indirect branches and return instructions, correspond to edges in the CFG produced

by the analysis phase. These targets are commonly divided into forward edges such

as indirect branches, and backward edges like return instructions (so called because

they return control back to the calling function). All CFI mechanisms protect forward

edges, but some do not handle backward edges. Code is assumed to be static and

31

immutable1, either at compile time or in a binary. The types of indirect transfers

that are subject to such validation and the number of valid targets per branch varies

greatly between different CFI defenses. These differences have a major impact on the

security and performance of the CFI mechanism.

CFI does not seek to prevent memory corruption, which is the root cause of most

vulnerabilities in C and C++ code. While mechanisms that enforce spatial [9] and

temporal [10] memory safety eliminate memory corruption (and thereby control-flow

hijacking attacks), existing mechanisms are considered prohibitively expensive. In

contrast, CFI defenses offer reasonably low overheads while making it substantially

harder for attackers to gain arbitrary code execution in vulnerable programs. Moreover,

CFI requires few changes to existing source code which allows complex software to

be protected in a mostly automatic fashion. While the idea of restricting branch

instructions based on target sets predates CFI [58,59], Abadi et al.’s seminal paper [33]

was the first formal description of CFI with an accompanying implementation. Since

this paper was published over a decade ago, the research community has proposed a

large number of variations of the original idea. More recently, CFI implementations

have been integrated into production-quality compilers, tools, and operating systems.

Current CFI mechanisms can be compared along two major axes: performance

and security. In the scientific literature, performance overhead is usually measured

through the SPEC CPU2006 benchmarks. Unfortunately, sometimes only a subset

of the benchmarks is used for evaluation. To evaluate security, many authors have

used the Average Indirect target Reduction (AIR) [41] metric that counts the overall

reduction of targets for any indirect control-flow transfer.

Current evaluation techniques do not adequately distinguish among CFI mecha-

nisms along these axes. Performance measurements are all in the same range, between

0% and 20% across different benchmarks with only slight variations for the same

1DEP marks code pages as executable and readable by default. Programs may subsequently change
permissions to make code pages writable using platform-specific APIs such as mprotect. Mitigations
such as PaX MPROTECT, SELinux [57], and the ProcessDynamicCodePolicy Windows API
restrict how page permissions can be changed to prevent code injection and modification.

32

benchmark. Since the benchmarks are evaluated on different machines with different

compilers and software versions, these numbers are close to the margin of measurement

error. On the security axis, AIR is not a desirable metric for two reasons. First, all

CFI mechanisms report similar AIR numbers (a > 99% reduction of branch targets),

which makes AIR unfit to compare individual CFI mechanisms against each other.

Second, even a large reduction of targets often leaves enough targets for an attacker

to achieve the desired goals [60–62], making AIR unable to evaluate security of CFI

mechanisms on an absolute scale.

We systematize the different CFI mechanisms (where “mechanism” captures both

the analysis and enforcement aspects of an implementation) and compare them against

metrics for security and performance. By introducing metrics for these areas, our

analysis allows the objective comparison of different CFI mechanisms both on an

absolute level and relatively against other mechanisms. This in turn allows potential

users to assess the trade-offs of individual CFI mechanisms and choose the one that is

best suited to their use case. Further, our systematization provides a more meaningful

way to classify CFI mechanism than the ill-defined and inconsistently used “coarse”

and “fine” grained classification.

To evaluate the security of CFI mechanisms we follow a comprehensive approach,

classifying them according to a qualitative and a quantitative analysis. In the qualitative

security discussion we compare the strengths of individual solutions on a conceptual

level by evaluating the CFI policy of each mechanism along several axes: (i) precision

in the forward direction, (ii) precision in the backward direction, (iii) supported

control-flow transfer types according to the source programming language, and (iv)

reported performance. In the quantitative evaluation, we measure the target sets

generated by each CFI mechanism for the SPEC CPU2006 benchmarks. The precision

and security guarantees of a CFI mechanism depend on the precision of target sets

used at runtime, i.e., across all control-flow transfers, how many superfluous targets

are reachable through an individual control-flow transfer. We compute these target

sets for all available CFI mechanisms and compare the ranked sizes of the sets against

33

each other. This methodology lets us compare the actual sets used for the integrity

checks of one mechanism against other mechanisms. In addition, we collect all indirect

control-flow targets used for the individual SPEC CPU2006 benchmarks and use

these sets as a lower bound on the set of required targets. We use this lower bound

to compute how close a mechanism is to an ideal CFI mechanism. An ideal CFI

mechanism is one where the enforced CFG’s edges exactly correspond to the executed

branches.

As a second metric, we evaluate the performance impact of open-sourced, compiler-

based CFI mechanisms. In their corresponding publications, each mechanism was

evaluated on different hardware, different libraries, and different operating systems,

using either the full or a partial set of SPEC CPU2006 benchmarks. We cannot port

all evaluated CFI mechanisms to the same baseline compiler. Therefore, we measure

the overhead of each mechanism relative to the compiler it was integrated into. This

apples-to-apples comparison highlights which SPEC CPU2006 benchmarks are most

useful when evaluating CFI.

The chapter is structured as follows. We first give a detailed background of the

theory underlying the analysis phase of CFI mechanisms. This allows us to then

qualitatively compare the different mechanisms on the precision of their analysis. We

then quantify this comparison with a novel metric. This is followed by our performance

results for the different implementation. Finally, we highlight best practices and future

research directions for the CFI community. identified during our evaluation.

Overall, we present the following contributions:

1. a systematization of CFI mechanisms with a focus on discussing the major

different CFI mechanisms and their respective trade-offs,

2. a taxonomy for classifying the underlying analysis of a CFI mechanism,

3. presentation of both a qualitative and quantitative security metric and the

evaluation of existing CFI mechanisms along these metrics, and

4. a detailed performance study of existing CFI mechanisms.

34

3.2.1 Foundational Concepts

We first introduce CFI and discuss the two components of most CFI mechanisms:

(i) the analysis that defines the CFG (which inherently limits the precision that can

be achieved) and (ii) the runtime instrumentation that enforces the generated CFG.

Secondly, we classify and systematize different types of control-flow transfers and

how they are used in programming languages. Finally, we briefly discuss the CFG

precision achievable with different types of static analysis. For those interested, a

more comprehensive overview of static analysis techniques is available in Section 3.3.

3.2.2 Control-Flow Integrity Example

CFI is a policy that restricts the execution flow of a program at runtime to a

predetermined CFG by validating indirect control-flow transfers. On the machine level,

indirect control-flow transfers may target any executable address of mapped memory,

but in the source language (C, C++, or Objective-C) the targets are restricted to valid

language constructs such as functions, methods and switch statement cases. Since

the aforementioned languages rely on manual memory management, it is left to the

programmer to ensure that non-control data accesses do not interfere with accesses

to control data such that programs execute legitimate control flows. Absent any

security policy, an attacker can therefore exploit memory corruption to redirect the

control-flow to an arbitrary memory location, which is called control-flow hijacking.

CFI closes the gap between machine and source code semantics by restricting the

allowed control-flow transfers to a smaller set of target locations. This smaller set is

determined per indirect control-flow location. Note that languages providing complete

memory and type safety generally do not need to be protected by CFI. However, many

of these “safe” languages rely on virtual machines and libraries written in C or C++

that will benefit from CFI protection.

Most CFI mechanisms determine the set of valid targets for each indirect control-

flow transfer by computing the CFG of the program. The security guarantees of a CFI

35

1 void foo(int a){
2 return;
3 }
4 void bar(int a){
5 return;
6 }
7 void baz(void){
8 int a = input ();
9 void (*fptr)(int);

10 if(a){
11 fptr = foo;
12 fptr ();
13 } else {
14 fptr = bar;
15 fptr ();
16 }
17 }

Figure 3.1. Simplified example of over approximation in static analysis.

mechanism depend on the precision of the CFG it constructs. The CFG cannot be

perfectly precise for non-trivial programs. Because the CFG is statically determined,

there is always some over-approximation due to imprecision of the static analysis. An

equivalence class is the set of valid targets for a given indirect control-flow transfer.

Throughout the following, we reference Figure 3.1. Assuming an analysis based on

function types or a flow-insensitive analysis, both foo() and bar() end up in the same

equivalence class. Thus, at line 12 and line 15 either function can be called. However,

from the source code we can tell that at line 12 only foo() should be called, and at

line 15 only bar() should be called. While this specific problem can be addressed

with a flow-sensitive analysis, all known static program analysis techniques are subject

to some over-approximation (see Section 3.3).

Once the CFI mechanism has computed an approximate CFG, it has to enforce its

security policy. We first note that CFI does not have to enforce constraints for control-

flows due to direct branches because their targets are immune to memory corruption

thanks to DEP. Instead, it focuses on attacker-corruptible branches such as indirect

calls, jumps, and returns. In particular, it must protect control-flow transfers that

36

allow runtime-dependent, targets such as void (*fptr)(int) in Figure 3.1. These

targets are stored in either a register or a memory location depending on the compiler

and the exact source code. The indirection such targets provide allows flexibility as,

e.g., the target of a function may depend on a call-back that is passed from another

module. Another example of indirect control-flow transfers is return instructions that

read the return address from the stack. Without such an indirection, a function would

have to explicitly enumerate all possible callers and check to which location to return

to based on an explicit comparison.

For indirect call sites, the CFI enforcement component validates target addresses

before they are used in an indirect control-flow transfer. This approach detects

code pointers (including return addresses) that were modified by an attacker – if the

attacker’s chosen target is not a member of the statically determined set.

3.2.3 Classification of Control-Flow Transfers

Control-flow transfers can broadly be separated into two categories: (i) forward

and (ii) backward. Forward control-flow transfers are those that move control to a new

location inside a program. When a program returns control to a prior location, we

call this a backward control-flow2.

A CPU’s instruction-set architecture (ISA) usually offers two forward control-flow

transfer instructions: call and jump. Both of these are either direct or indirect,

resulting in four different types of forward control-flow:

• direct jump: is a jump to a constant, statically determined target address. Most

local control-flow, such as loops or if-then-else cascaded statements, use direct

jumps to manage control.

• direct call : is a call to a constant, statically determined target address. Static

function calls, for example, use direct call instructions.

2Note the ambiguity of a backward edge in machine code (i.e., a backward jump to an earlier memory
location) which is different from a backward control-flow transfer as used in CFI.

37

• indirect jump: is a jump to a computed, i.e., dynamically determined target

address. Examples for indirect jumps are switch-case statements using a dispatch

table, Procedure Linkage Tables (PLT), as well as the threaded code interpreter

dispatch optimization [63–65].

• indirect call : is a call to a computed, i.e., dynamically determined target address.

The following three examples are relevant in practice:

Function pointers are often used to emulate object-oriented method dispatch

in classical record data structures, such as C structs, or for passing callbacks

to other functions.

vtable dispatch is the preferred way to implement dynamic dispatch to C++

methods. A C++ object keeps a pointer to its vtable, a table containing pointers

to all virtual methods of its dynamic type. A method call, therefore, requires (i)

dereferencing the vtable pointer, (ii) computing table index using the method

offset determined by the object’s static type, and (iii) an indirect call instruction

to the table entry referenced in the previous step. In the presence of multiple

inheritance, or multiple dispatch, dynamic dispatch is slightly more complicated.

Smalltalk-style send-method dispatch that requires a dynamic type look-

up. Such a dynamic dispatch using a send-method in Smalltalk, Objective-C,

or JavaScript requires walking the class hierarchy (or the prototype chain in

JavaScript) and selecting the first method with a matching identifier. This

procedure is required for all method calls and therefore impacts performance

negatively. Note that, e.g., Objective-C uses a lookup cache to reduce the

overhead.

We note that jump instructions can also be either conditional or unconditional.

For the purposes of this dissertation this distinction is irrelevant.

All common ISAs support backward and forward indirect control-flow transfers.

For example, the x86 ISA supports backward control-flow transfers using just one

instruction: return, or just ret. A return instruction is the symmetric counterpart of

38

a call instruction, and a compiler emits function prologues and epilogues to form such

pairs. A call instruction pushes the address of the immediately following instruction

onto the native machine stack. A return instruction pops the address off the native

machine stack and updates the CPU’s instruction pointer to point to this address.

Notice that a return instruction is conceptually similar to an indirect jump instruction,

since the return address is unknown a priori. Furthermore, compilers are emitting

call-return pairs by convention that hardware usually does not enforce. By modifying

return addresses on the stack, an attacker can “return” to all addresses in a program,

the foundation of return-oriented programming [66–68].

Control-flow transfers can become more complicated in the presence of exceptions.

Exception handling complicates control-flows locally, i.e., within a function, for example

by moving control from a try-block into a catch-block. Global exception-triggered

control-flow manipulation, i.e., interprocedural control-flows, require unwinding stack

frames on the current stack until a matching exception handler is found.

Other control-flow related issues that CFI mechanisms should (but not always

do) address are: (i) separate compilation, (ii) dynamic linking, and (iii) compiling

libraries. These present challenges because the entire CFG may not be known at

compile time. This problem can be solved by relying on Link Time Optimization

(LTO), or dynamically constructing the combined CFG. Finally, keep in mind that, in

general, not all control-flow transfers can be recovered from a binary.

Summing up, our classification scheme of control-flow transfers is as follows:

• CF.1: backward control-flow,

• CF.2: forward control-flow using direct jumps,

• CF.3: forward control-flow using direct calls,

• CF.4: forward control-flow using indirect jumps,

• CF.5: forward control-flow using indirect calls supporting function pointers,

• CF.6: forward control-flow using indirect calls supporting vtables,

39

• CF.7: forward control-flow using indirect calls supporting Smalltalk-style

method dispatch,

• CF.8: complex control-flow to support exception handling,

• CF.9: control-flow supporting language features such as dynamic linking, sepa-

rate compilation, etc.

According to this classification, the C programming language uses control-flow

transfers 1–5, 8 (for setjmp/longjmp) and 9, whereas the C++ programming language

allows all control-flow transfers except no. 7.

3.2.4 Classification of Static Analysis Precision

As we saw in Section 3.2.2, the security guarantees of a CFI mechanism ultimately

depend on the precision of the CFG that it computes. This precision is in turn

determined by the type of static analysis used. For the purposes of this dissertation,

the following classification summarizes prior work to determine forward control-flow

transfer analysis precision (see Section 3.3 for full details). In order of increasing static

analysis precision (SAP), our classifications are:

• SAP.F.0: no forward branch validation

• SAP.F.1a: ad-hoc algorithms and heuristics

• SAP.F.1b: context- and flow-insensitive analysis

• SAP.F.1c: labeling equivalence classes

• SAP.F.2: class-hierarchy analysis

• SAP.F.3: rapid-type analysis

• SAP.F.4a: flow-sensitive analysis

• SAP.F.4b: context-sensitive analysis

• SAP.F.5: context- and flow-sensitive analysis

40

• SAP.F.6: dynamic analysis (optimistic)

The following classification summarizes prior work to determine backward control-

flow transfer analysis precision:

• SAP.B.0: no backward branch validation

• SAP.B.1: labeling equivalence classes

• SAP.B.2: shadow stack

3.3 Prior Work on Static Analysis

Static analysis research has attracted significant interest from the research commu-

nity. Following our classification of control-flows in Section 3.2.3, we are particularly

interested in static analysis that identifies indirect calls/jump targets. Researchers

refer to this kind of static analysis as points-to analysis. The wealth of information and

results in points-to analysis goes well beyond the scope of this dissertation. We refer

the interested reader to Smaragdakis and Balatsouras [69] and focus our attention on

how points-to analysis affects CFI precision.

3.3.1 A Theoretical Perspective

Many compiler optimizations benefit from points-to analysis. As a result, points-to

analysis must be sound at all times and therefore conservatively over-approximates

results. The program analysis literature (e.g., [69–72]) expresses this conservative

aspect as a may-analysis: A specific object “may” point to any members of a computed

points-to set.

For the purposes of this dissertation, the following orthogonal dimensions in

points-to analysis affect precision:

• flow-sensitive vs. flow-insensitive: this dimension states whether an analysis

considers control-flow (sensitive) or not (insensitive).

41

• context-sensitive vs. context-insensitive: this dimension states whether an

analysis considers various forms of context (sensitive) or not (insensitive). The

literature further separates the following context information sub-categories: (i)

call-site sensitive: the context includes a function’s call-site (e.g., call-strings [73]),

(ii) object sensitive: the context includes the specific receiver object present

at a call-site [74], (iii) type sensitive: the context includes type information of

functions or objects at a call-site [75].

Both dimensions, context and flow sensitivity, are orthogonal and a points-to analysis

combining both yields higher precision.

Flow-Sensitivity. Figures 3.2a – 3.2c show the effect of flow sensitivity on points-to

analysis. A flow-sensitive analysis considers the state of the program per line. We see,

for instance, in Figure 3.2b how a flow-sensitive analysis computes the proper object

type per allocation site. A flow-insensitive analysis, on the other hand, computes sets

that are valid for the whole program. Or, simply put, it lumps all statements of the

analyzed block (intra- or interprocedural) into one set and computes a single points-to

set that satisfies all of these statements. From a CFI perspective, a flow-sensitive

points-to analysis offers higher precision.

Context-Sensitivity. Figures 3.2d – 3.2f show the effects of context sensitivity on

points-to analysis. In Figure 3.2d we see that the function id is called twice, with

parameters of different dynamic types. Context-insensitive analysis (cf. Figure 3.2f),

does not distinguish between the two different calling contexts and therefore computes

an over-approximation by lumping all invocations into one points-to set (e.g., the

result of calling id is a set with two members). A context-insensitive analysis, put

differently, considers a function independent from its callers, and is therefore the

forward control-flow transfer symmetric case of a backward control-flow transfers

returning to many callers [70]. Context-sensitive analysis (cf. Figure 3.2e), on the

other hand, uses additional context information to compute higher precision results.

42

1 Object o;

2 o= new A();

3 ...

4
5 o= new B();

(a) Flow-sensitivity exam-
ple.

1
2 o→ A

3 ...

4
5 o→ B

(b) Flow-sensitive result.

o→ {A, B}

(c) Flow-insensitive result.

1 // identity function

2 Object id(Object o) { return o; }

3
4 x= new A();

5 y= new B();

6 a= id(x);

7 b= id(y);

(d) Context-sensitivity ex-
ample.

1
2
3 x→ A

4 y → B

5 a→ A; id1 → A

6 b→ B; id2 → B

(e) Context-sensitive result.

1
2
3 x→ A

4 y → B

5 a→ id; id→ A

6 b→ id; id→ {A, B}

(f) Context-insensitive re-
sult.

Figure 3.2. Effects of flow/context sensitivity on precision.

The last two lines in Figure 3.2e illustrate the higher precision by inferring the proper

dynamic types A and B. From a CFI perspective, a context-sensitive points-to analysis

offers higher precision.

Object-Oriented Programming Languages. A C-like language requires call-

string or type context-sensitivity to compute precise results for function pointers. Due

to dynamic dispatch, however, a C++-like language should consider more context

provided by object sensitivity [74, 76]. Alternatively, prior work describes several

algorithms to “de-virtualize” call-sites. If a static analysis identifies that only one

receiver is possible for a given call-site (i.e., if the points-to set is a singleton) a compiler

can sidestep expensive dynamic dispatch via the vtable and generate a direct call to

the referenced method. Class-hierarchy analysis (CHA) [77] and rapid-type analysis

(RTA) [78] are prominent examples that use domain-specific information about the class

hierarchy to optimize virtual method calls. RTA differs from CHA by pruning entries

43

from the class hierarchy from objects that have not been instantiated. As a result,

the RTA precision is higher than CHA precision [79]. Grove and Chambers [79] study

the topic of call-graph construction and present a partial order of various approaches’

precision (Figure 19, pg. 735). With regards to CFI, higher precision in the call-graph

of virtual method invocations translates to either (i) more de-virtualized call-sites,

which replace an indirect call by a direct call, or (ii) shrinking the points-to sets,

which reduce an adversary’s attack surface. Note that the former, de-virtualization of

a call-site also has the added benefit of removing the call-site from a points-to set and

transforming an indirect control-flow transfer to a direct control-flow transfer that

need not be validated by the CFI enforcement component.

3.3.2 A Practical Perspective

Points-to analysis over-approximation reduces precision and therefore restricts the

optimization potential of programs. The reduced precision also lowers precision for

CFI, opening the door for attackers. If, for instance, the over-approximated set of

computed targets contains many more “reachable” targets, then an attacker can use

those control-flow transfers without violating the CFI policy. Consequently, prior

results from studying the precision of static points-to analysis are of key importance

to understanding CFI policies’ security properties.

Mock et al. have studied dynamic points-to sets and compared them to statically

determined points-to sets [80]. More precisely, the study used an instrumentation

framework to compute dynamic points-to sets and compared them with three flow-

and context-insensitive points-to algorithms. The authors report that static analyses

identified 14% of all points-to sets as singletons, whereas dynamic points-to sets were

singletons in 97% of all cases. In addition, the study reports that one out of two

statically computed singleton points-to sets were optimal in the sense that the dynamic

points-to sets were also singletons. The authors describe some caveats and state that

flow and context sensitive points-to analyses were not practical in evaluation since

44

f

g

h

{f, g}

Figure 3.3. Backward control-flow precision. Solid lines correspond to function calls
and dashed lines to returns from functions to their call sites. Call-sites are singletons
whereas h’s return can return to two callers.

they did not scale to practical programs. Subsequent work has, however, established

the scalability of such points-to analyses [81–83], and a similar experiment evaluating

the precision of computed results is warranted.

Concerning the analysis of de-virtualized method calls, prior work reports the

following results. By way of manual inspection, Rountev et al. [84] report that 26% of

call chains computed by RTA were actually infeasible. Lhotak and Hendren [76] studied

the effect of context-sensitivity to improve precision on object-oriented programs. They

find that context sensitivity has only a modest effect on call-graph precision, but also

report substantial benefits of context sensitivity to resolve virtual calls. In particular,

Lhotak and Hendren highlight the utility of object-sensitive analyses for this task.

Tip and Palsberg [85] present advanced algorithms, XTA among others, and report

that it improves precision over RTA, on average, by 88%.

3.3.3 Backward Control Flows

Figure 3.3 shows two functions, f and g, which call another function h. The return

instruction in function h can, therefore, return to either function f or g, depending on

which function actually called h at run-time. To select the proper caller, the compiler

maintains and uses a stack of activation records, also known as stack frames. Each

stack frame contains information about the CPU instruction pointer of the caller as

well as bookkeeping information for local variables.

45

Since there is only one return instruction at the end of a function, even the most

precise static analysis can only infer the set of callers for all calls. Computing this set,

inevitably, leads to imprecision and all call-sites of a given function must therefore

share the same label/ID such that the CFI check succeeds. Presently, the only known

alternative to this loss of precision is to maintain a shadow stack and check whether

the current return address equals the return address of the most recent call instruction.

3.3.4 Nomenclature and Taxonomy

Prior work on CFI usually classifies mechanisms into fine-grained and coarse-grained.

Over time, however, these terms have been used to describe different systems with

varying granularity and have, therefore, become overloaded and imprecise. In addition,

prior work only uses a rough separation into forward and backward control-flow

transfers without considering sub types or precision. We hope that the classifications

here will allow a more precise and consistent definition of the precision of CFI

mechanisms underlying analysis, and will encourage the CFI community to use the

most precise techniques available from the static analysis literature.

3.4 Security

In this section we present a security analysis of existing CFI implementations.

Drawing on the foundational knowledge in Section 3.2.1, we present a qualitative

analysis of the theoretical security of different CFI mechanisms based on the policies

that they implement. We then give a quantitative evaluation of a selection of CFI

implementations. Finally, we survey previous security evaluations and known attacks

against CFI.

46

CF

SAP.F SAP.B

RP

(a) Orig. CFI
[33]

CF

SAP.F SAP.B

RP

(b) Hypersafe [35]

CF

SAP.F SAP.B

RP

(c) CF-Locking
[86]

CF

SAP.F SAP.B

RP

(d) MoCFI
[87]

CF

SAP.F SAP.B

RP

(e) MIP
[42]

CF

SAP.F SAP.B

RP

(f) kBouncer
[88]

CF

SAP.F SAP.B

RP

(g)
CF-Restrictor [89]

CF

SAP.F SAP.B

RP

(h) CCFIR
[39]

CF

SAP.F SAP.B

RP

(i) bin-CFI [41]

CF

SAP.F SAP.B

RP

(j) ROPecker
[90]

CF

SAP.F SAP.B

RP

(k) KCoFI
[44]

CF

SAP.F

RP

(l) SafeDispatch
[91]

CF

SAP.F

RP

(m) T-VIP [92]

CF

SAP.F SAP.B

RP

(n) HW-asst. CFI
[93]

CF

SAP.F SAP.B

RP

(o) RockJIT
[32]

CF

SAP.F

RP

(p) VTV
[46]

CF

SAP.F SAP.B

RP

(q) O-CFI
[94]

CF

SAP.F SAP.B

RP

(r) C-CFI [95]

CF

SAP.F

RP

(s) vfGuard
[96]

CF

SAP.F

RP

(t) VTint
[97]

CF

SAP.F SAP.B

RP

(u)
PathArmor [98]

CF

SAP.F SAP.B

RP

(v) CFIGuard
[99]

CF

SAP.F

RP

(w) CFGuard
[100]

CF

SAP.F

RP

(x) VTI
[101]

CF

SAP.F SAP.B

RP

(y) Kernel CFI
[102]

Figure 3.4. CFI implementation comparison: supported control-flows (CF), reported
performance (RP), static analysis precision: forward (SAP.F) and backward (SAP.B).
Backward (SAP.B) is omitted for mechanisms that do not support back edges. Color
coding of CFI implementations: binary are blue, source-based are green, others red.

47

3.4.1 Qualitative Security Guarantees

Our qualitative analysis of prior work and proposed CFI implementations relies

on the classifications of the previous section (cf. Section 3.2.1) to provide a higher

resolution view of precision and security. Figure 3.4 summarizes our findings among four

dimensions based on the author’s reported results and analysis techniques. Figure 3.5

presents our verified results for open source LLVM-based implementations that we have

selected. Further, it adds a quantitative argument based on our work in Section 3.4.2.

In Figure 3.4 the axes and values were calculated as follows. Note that (i) the scale

of each axis varies based on the number of data points required and (ii) weaker/slower

always scores lower and stronger/faster higher.

Therefore, the area of the spider plot roughly estimates the security/precision of a

given mechanism:

• CF: supported control-flow transfers, assigned based on our classification scheme

in Section 3.2.3;

• RP: reported performance numbers. Performance is quantified on a scale of 1-10

by taking the arctangent of reported runtime overhead and normalizing for high

granularity near the median overhead. An implementation with no overhead

receives a full score of 10, and one with about 35% or greater overhead receives

a minimum score of 1.

• SAP.F: static-analysis precision of forward control-flows, assigned based on our

classification in Section 3.2.4; and

• SAP.B: static-analysis precision of backward control-flows, assigned based on

our classification in Section 3.2.4.

The shown CFI implementations are ordered chronologically by publication year,

and the colors indicate whether a CFI implementation works on the binary-level

(blue), relies on source-code (green), or uses other mechanisms (red), such as hardware

implementations.

48

CF

SAP.F

SAP.B

RP

Q

(a) MCFI
[45]

CF

SAP.F

SAP.B

RP

Q

(b) πCFI
[43]

CF

SAP.F RP

Q

(c) IFCC
[46]

CF

SAP.F

Q

(d) LLVM-CFI-3.7
(2015)

CF

SAP.F

SAP.B

RP

Q

(e) Lockdown
[103]

Figure 3.5. Quantitative comparison: control-flows (CF), quantitative security (Q),
reported performance (RP), static analysis precision: forward (SAP.F) and backward
(SAP.B).

Our classification and categorization efforts for reported performance were hindered

by methodological variances in benchmarking. Experiments were conducted on different

machines, different operating systems, and also different or incomplete benchmark

suites. Classifying and categorizing static analysis precision was impeded by the high

level, imprecise descriptions of the implemented static analysis by various authors.

Both of these impediments, naturally, are sources of imprecision in our evaluation.

Comprehensive protection through CFI requires the validation of both forward and

backward branches. This requirement means that the reported performance impact for

forward-only approaches (i.e., SafeDispatch, T-VIP, VTV, IFCC, vfGuard, and VTint)

is restricted to partial protection. The performance impact for backward control-flows

must be considered as well, when comparing these mechanisms to others with full

protection.

CFI mechanisms satisfying SAP.B.2, i.e., using a shadow stack to obtain high

precision for backward control-flows are: original CFI [33], MoCFI [87], HAFIX [93,104],

and Lockdown [103]. PathArmor emulates a shadow stack through validating the

last-branch register (LBR).

Increasing the precision of static analysis techniques that validate whether any given

control-flow transfer corresponds to an edge in the CFG decreases the performance

of the CFI mechanism. Most implementations choose to combine precise results of

static analysis into an equivalence class. Each such equivalence class receives a unique

49

identifier, often referred to as a label, which the CFI enforcement component validates

at runtime. By not using a shadow stack, or any other comparable high-precision

backward control-flow transfer validation mechanism, even high precision forward

control-flow transfer static analysis becomes imprecise due to labeling. The explanation

for this loss in precision is straightforward: to validate a control-flow transfer, all callers

of a function need to carry the same label. Labeling, consequently, is a substantial

source of imprecision (see Section 3.4.2 for more details). The notable exception in

this case is πCFI, which uses dynamic information, to activate pre-determined edges,

dynamically enabling high-resolution, precise control-flow graph (somewhat analogous

to dynamic points-to sets [80]. Borrowing a term from information-flow control [105],

πCFI can, however, suffer from label creep by accumulating too many labels from the

static CFG.

CFI implementations introducing imprecision via labeling are: the original CFI

paper [33], control-flow locking [37], CF-restrictor [89], CCFIR [39], MCFI [45],

KCoFI [44], and RockJIT [32].

According to the criteria established in analyzing points-to precision, we find that

at the time of this writing, πCFI [43] offers the highest precision due to leveraging

dynamic points-to information. πCFI’s predecessors, RockJIT [32] and MCFI [45],

already offered a high precision due to the use of context-sensitivity in the form of

types. Ideal PathArmor also scores well when subject to our evaluation: high-precision

in both directions, forward and backward, but is hampered by limited hardware

resources (LBR size) and restricting protection to the main executable (i.e., trusting

libraries). Lockdown [103] offers high precision on the backward edges but derives

its equivalence classes from the number of libraries used in an application and is

therefore inherently limited in the precision of the forward edges. IFCC [46] offers

variable static analysis granularity. On the one hand, IFCC describes a Full mode

that uses type information, similar to πCFI and its predecessors. On the other hand,

IFCC mentions less precise modes, such as using a single set for all destinations, and

separating by function arity. With the exception of Hypersafe [35], all other evaluated

50

CFI implementations with supporting academic publications offer lower precision of

varying degrees, at most as precise as SAP.F.3.

3.4.2 Quantitative Security Guarantees

Quantitatively assessing how much security a CFI mechanism provides is chal-

lenging as attacks are often program dependent and different implementations might

allow different attacks to succeed. So far, the only existing quantitative measure of

the security of a CFI implementation is Average Indirect Target Reduction (AIR).

Unfortunately, AIR is known to be a weak proxy for security [46]. A more meaningful

metric must focus on the number of targets (i.e., number of equivalence classes)

available to an attacker. Furthermore, it should recognize that smaller classes are

more secure, because they provide less attack surface. Thus, an implementation with

a small number of large equivalence classes is more vulnerable than an implementation

with a large number of small equivalence classes.

One possible metric is the product of the number of equivalence classes (EC) and

the inverse of the size of the largest class (LC), see Equation 3.1. Larger products

indicate a more secure mechanism as the product increases with the number of

equivalence classes and decreases with the size of the largest class. More equivalence

classes means that each class is smaller, and thus provides less attack surface to

an adversary. Controlling for the size of the largest class attempts to control for

outliers, e.g., one very large and thus vulnerable class and many smaller ones. A more

sophisticated version would also consider the usability and functionality of the sets.

Usability considers whether or not they are located on an attacker accessible “hot”

path, and if so how many times they are used. Functionality evaluates the quality of

the sets, whether or not they include “dangerous” functions like mprotect. A large

equivalence class that is pointed to by many indirect calls on the hot path poses a

higher risk because it is more accessible to the attacker.

51

EC ∗ 1

LC
= QuantitativeSecurity (3.1)

This metric is not perfect, but it allows a meaningful direct comparison of the

security and precision of different CFI mechanisms, which AIR does not. The gold

standard would be adversarial analysis. However, this currently requires a human

to perform the analysis on a per-program basis. This leads to a large number of

methodological issues: how many analysts, which programs and inputs, how to combine

the results, etc. Such a study is beyond the scope of this work, which instead uses our

proposed metric which can be measured programatically.

This section measures the number and sizes of sets to allow a meaningful, direct

comparison of the security provided by different implementations. Moreover, we

report the dynamically observed number of sets and their sizes. This quantifies the

maximum achievable precision from the implementations’ CFG analysis, and shows

how over-approximate they were for a given execution of the program.

3.4.3 Implementations

We evaluate four compiler-based, open-source CFI mechanisms IFCC, LLVM-CFI,

For IFCC and MCFI we also evaluated the different analysis techniques available in

the implementation. Note that we evaluate two different versions of LLVM-CFI, the

first release in LLVM 3.7 and the second, highly modified version in LLVM 3.9. In

addition to the compiler based solutions, we also evaluate Lockdown, which is a binary

based CFI implementation.

MCFI and πCFI already have a built-in reporting mechanism. For the other

mechanisms we extend the instrumentation pass and report the number and size of

the produced target sets. We then used the implementations to compile, and for πCFI

run, the SPEC CPU2006 benchmarks to produce the data we report here. πCFI must

be run because it does dynamic target activation. This does tie our results to the ref

52

data set for SPEC CPU2006, because as with any dynamic analysis the results will

depend on the input.

IFCC3 comes with four different CFG analysis techniques: single, arity, simplified,

and full. Single creates only one equivalence class for the entire program, resulting

in the weakest possible CFI policy. Arity groups functions into equivalence classes

based on their number of arguments. Simplified improves on this by recognizing three

types of arguments: composite, integer, or function pointer. Full considers the precise

return type and types of each argument. We expect full to yield the largest number of

equivalence classes with the smallest sizes, as it performs the most exact distribution

of targets.

Both MCFI and πCFI rely on the same underlying static analysis. The authors

claim that disabling tail calls is the single most important precision enhancement for

their CFG analysis [106]. We measure the impact of this option on our metric. MCFI

and πCFI are also unique in that their policy and enforcement mechanisms consider

backward edges as well as forward edges. When comparing to other implementations,

we only consider forward edges. This ensures direct comparability for the number and

size of sets. The results for backward edges are presented as separate entries in the

figures.

As of LLVM 3.7, LLVM-CFI could not be directly compared to the other CFI

implementations because its policy was strictly more limited. Instead of considering

all forward, or all forward and backward edges, LLVM-CFI 3.7 focused on virtual calls

and ensures that virtual, and non-virtual calls are performed on objects of the correct

dynamic type. As of LLVM 3.9, LLVM-CFI has added support for all indirect calls.

Despite these differences, we show the full results for both LLVM-CFI implementations

in all tables and graphs.

Lockdown is a CFI implementation that operates on compiled binaries and supports

the instrumentation of dynamically loaded code. To protect backward edges, Lockdown

enforces a shadow stack. For the forward edge, it instruments libraries at runtime,

3Note that the IFCC patch was pulled by the authors and will be replaced by LLVM-CFI.

53

creating one equivalence class per library. Consequently, the set size numbers are of the

greatest interest for Lockdown. Lockdown’s precision depends on symbol information,

allowing indirect calls anywhere in a particular library if it is stripped. Therefore, we

only report the set sizes for non-stripped libraries where Lockdown is more precise.

To collect the data for our lower bound, we wrote an LLVM pass. This pass

instruments the program to collect and report the source line for each indirect call,

the number of different targets for each indirect call, and the number of times each of

those targets was used. This data is collected at runtime. Consequently, it represents

only a subset of all possible indirect calls and targets that are required for the sample

input to run. As such, we use it to present a lower bound on the number of equivalence

sets (i.e. unique indirect call sites) and size of those sets (i.e. the number of different

locations called by that site).

3.4.4 Results

We conducted three different quantitative evaluations in line with our proposed

metric for evaluating the overall security of a CFI mechanism and our lower bound.

For IFCC, LLVM-CFI (3.7 and 3.9), and MCFI it is sufficient to compile the

SPEC CPU2006 benchmarks as they do not dynamically change their equivalence

classes. πCFI uses dynamic information, so we had to run the SPEC CPU2006

benchmarks. Similarly, Lockdown is a binary CFI implementation that only operates

at run time. We highlight the most interesting results in Figure 3.5, see Table 3.1 for

the full data set.

54

T
ab

le
3.

1.
F

u
ll

q
u
an

ti
ta

ti
ve

se
cu

ri
ty

re
su

lt
s

fo
r

n
u
m

b
er

of
eq

u
iv

al
en

ce
cl

as
se

s.

B
en

ch
m
a
rk

C
F
I
Im

p
le
m
en

ta
ti
o
n

M
C
F
I

π
C
F
I

M
C
F
I

π
C
F
I

M
C
F
I

π
C
F
I

M
C
F
I

π
C
F
I

IF
C
C

L
L
V
M
-C

F
I

L
o
ck

-
D
y
n
a
m
ic

b
a
ck

ed
g
e

fo
rw

a
rd

ed
g
e

si
n
g
le

a
ri
ty

si
m
p
l.

fu
ll

3
.7

3
.9

d
o
w
n

n
o
ta
il
ca

ll
n
o
ta
il
ca

ll

4
0
0
.p
er
lb
en

ch
9
7
8

3
1
0

1
1
9
2

4
2
9

3
8

3
0

3
8

3
0

1
6

1
2

4
0

0
3
6

4
8
3

4
0
1
.b
zi
p
2

4
8
4

8
2

4
8
9

8
6

1
4

1
0

1
4

1
0

1
2

2
2

0
2

3
1
2

4
0
3
.g
cc

2
2
1
9

1
2
6
0

3
2
8
2

1
8
3
6

9
8

9
0

9
8

9
0

0
0

0
0

0
9
4

3
1
9
7

4
2
9
.m

cf
4
7
5

9
6

4
7
5

9
6

1
2

8
1
2

8
0

0
0

0
0

0
3

0
4
4
5
.g
o
b
m
k

9
2
2

2
8
3

1
0
7
5

2
3
0

2
1

1
7

2
1

1
7

0
0

0
0

0
1
1

4
0

4
5
6
.h
m
m
er

6
6
3

1
3
4

7
2
0

1
4
7

1
4

9
1
4

9
0

0
0

0
0

3
4

9
4
5
8
.s
je
n
g

5
4
0

1
1
9

5
5
7

1
2
5

1
3

9
1
3

9
1

1
1

1
0

1
3

1
4
6
2
.l
ib
q
u
a
n
tu

m
4
9
5

8
8

5
1
9

1
0
2

1
2

8
1
2

8
1

1
1

1
0

0
4

0
4
6
4
.h
2
6
4
re
f

7
7
3

2
8
5

8
4
7

3
2
7

2
1

1
5

2
1

1
5

0
0

0
0

0
9

4
5
9

4
7
1
.o
m
n
et
p
p

1
6
9
3

5
8
1

1
7
8
4

6
2
4

3
5
7

3
2
1

3
5
7

3
2
1

0
0

0
0

1
1
4

3
5

0
2
2
4

4
7
3
.a
st
a
r

1
0
9
6

2
2
6

1
1
0
8

2
3
7

1
6
6

1
5
0

1
6
6

1
5
0

0
0

0
0

1
1

6
1

4
8
3
.x
a
la
n
cb

m
k

6
1
6
1

2
3
8
1

7
1
6
2

2
8
6
9

1
5
3
4

1
2
0
0

1
5
3
4

1
2
0
0

0
0

0
0

2
1
9
7

2
6
0

6
1
4
0
2

4
3
3
.m

il
c

6
0
2

1
6
9

6
2
8

1
8
0

1
3

9
1
3

9
0

0
0

0
0

1
4

3
4
4
4
.n
a
m
d

1
0
8
0

2
1
7

1
0
8
7

2
2
4

1
6
6

1
5
0

1
6
6

1
5
0

1
1

1
5

4
4

6
1
2

4
4
7
.d
ea

lI
I

2
9
5
2

8
1
7

3
4
6
8

8
9
6

2
9
3

2
5
8

2
9
3

2
5
8

0
0

0
0

4
3

1
5

0
9
5

4
5
0
.s
o
p
le
x

1
4
4
4

4
3
2

1
5
6
9

4
7
9

3
2
1

2
9
1

3
2
1

2
9
1

1
7

0
1
8
6

4
1

9
6

1
5
7

4
5
3
.p
o
v
ra
y

1
7
4
8

6
5
0

1
9
3
4

7
4
3

2
1
8

2
0
4

2
1
8

2
0
4

0
0

0
0

2
9

3
3

6
4
9

4
7
0
.l
b
m

4
6
5

7
0

4
7
0

7
4

1
2

8
1
2

8
0

0
0

0
0

0
4

0
4
8
2
.s
p
h
in
x
3

6
3
3

2
3
9

6
7
7

2
5
7

1
3

9
1
3

9
0

0
0

0
0

1
4

2

55

Figure 3.6 shows the number of equivalence classes for the five CFI implementations

that we evaluated, as well as their sub-configurations. As advertised, IFCC Single

only creates one equivalence class. This IFCC mode offers the least precision of any

implementation measured. The other IFCC analysis modes only had a noticeable

impact for perlbench and soplex. Indeed, on the sjeng benchmark all four analysis

modes produced only one equivalence class.

On forward edges, MCFI and πCFI are more precise than IFCC in all cases except

for perlbench where they are equivalent. LLVM-CFI 3.9 is more precise than IFCC

while being less precise than MCFI. MCFI and πCFI are the only implementations

to consider backward edges, so no comparison with other mechanisms is possible

on backward edge precision. Relative to each other, πCFI’s dynamic information

decreases the number of equivalence classes available to the attacker by 21.6%. The

authors of MCFI and πCFI recommend disabling tail calls to improve CFG precision.

This only impacts the number of sets that they create for backward edges, not forward

edges. As such this compiler flag does not impact most CFI implementations, which

rely on a shadow stack for backward edge security.

LLVM-CFI 3.7 creates a number of equivalence classes equal to the number of

classes used in the C++ benchmarks. Recall that it only provides support for a subset

of indirect control-flow transfer types. However, we present the results in Figure 3.6

and Figure 3.7 to show the relative cost of protecting vtables in C++ relative to

protecting all indirect call sites.

We quantify the set sizes for each of the four implementations in Figure 3.7. We

show box and whisker graphs of the set sizes for each implementation. The red line is

the median set size and a smaller median set size indicates more secure mechanisms.

The blue box extends from the 25th percentile to the 75th, smaller boxes indicate a

tight grouping around the median. An implementation might have a low median, but

large boxes indicate that there are still some large equivalence classes for an attacker

to target. The top whisker extends from the top of the box for 150% of the size of the

box. Data points beyond the whiskers are considered outliers and indicate large sets.

56

0 1 2 3 4 5 6 7 8 9 10 110

10

20

30

40

50

60

70

80

90 400.perlbench

0 1 2 3 4 5 6 7 8 9 10 110

50

100

150

200 403.gcc

0 1 2 3 4 5 6 7 8 9 10 110

500

1000

1500

2000

2500 483.xalancbmk

0 1 2 3 4 5 6 7 8 9 10 110

50

100

150

200

250 453.povray

0 MCFI
1 πCFI
2 MCFI no tail call
3 πCFI no tail call
4 IFCC single
5 IFCC arity
6 IFCC simplified
7 IFCC full
8 LLVM-CFI-3.7
9 LLVM-CFI-3.9
10 Lockdown
11 Dynamic

Figure 3.6. Total number of forward-edge equivalence classes when running SPEC
CPU2006 (higher is better).

This plot format allows an intuitive understanding of the security of the distribution

of equivalence class sizes. Lower medians and smaller boxes are better. Any data

points above the top of the whisker show very large, outlier equivalence classes that

provide a large attack surface for an adversary.

Note that IFCC only creates a single equivalence class for xalancbmk and namd

(except for the Full configuration on namd which is more precise). Entries with just

a single equivalence class are reported as only a median. IFCC data points allow us

to rank the different analysis methods, based on the results for benchmarks where

they actually impacted set size: perlbench and soplex. In increasing order of precision

(least precise to most precise) they are: single, arity, simplified, and full. This does

not necessarily mean that the more precise analysis methods are more secure, however.

For perlbench the more precise methods have outliers at the same level as the median

for the least precise (i.e., single) analysis. For soplex the outliers are not as bad, but

the full outlier is the same size as the median for arity. While increasing the precision

57

100

101

102

103

104
400.perlbench 401.bzip2 403.gcc 410.bwaves 416.gamess

100

101

102

103

104
429.mcf 434.zeusmp 435.gromacs 436.cactusADM 437.leslie3d

100

101

102

103

104
445.gobmk 454.caclulix 456.hmmer 458.sjeng 462.libquantum

100

101

102

103

104
464.h264ref 465.tonto 471.omnetpp 473.astar 483.xalancbmk

433.milc 444.namd 447.dealII 450.soplex 453.povray

M
CF

I
π
CF

I
M

CF
I-b

π
CF

I-b IF
CC

IF
CC

-a
rit

y
IF

CC
-s

im
pl

e
IF

CC
-fu

ll
LL

VM
-C

FI
-3

.7
LL

VM
-C

FI
-3

.9
Lo

ck
do

w
n

Dy
na

m
ic

470.lbm

M
CF

I
π
CF

I
M

CF
I-b

π
CF

I-b IF
CC

IF
CC

-a
rit

y
IF

CC
-s

im
pl

e
IF

CC
-fu

ll
LL

VM
-C

FI
-3

.7
LL

VM
-C

FI
-3

.9
Lo

ck
do

w
n

Dy
na

m
ic

481.wrf

M
CF

I
π
CF

I
M

CF
I-b

π
CF

I-b IF
CC

IF
CC

-a
rit

y
IF

CC
-s

im
pl

e
IF

CC
-fu

ll
LL

VM
-C

FI
-3

.7
LL

VM
-C

FI
-3

.9
Lo

ck
do

w
n

Dy
na

m
ic

482.sphinx3

Figure 3.7. Whisker plot of equivalence class sizes for different mechanisms when
running SPEC CPU2006. (Smaller is Better)

58

of the underlying CFG analysis increases the overall security, edge cases can cause the

incremental gains to be much smaller than anticipated.

The MCFI forward-edge data points highlight this. The MCFI median is always

smaller than the IFCC median. However, for all the benchmarks where both ran, the

MCFI outliers are greater than or equal to the largest IFCC set. From a quantitative

perspective, we can only confirm that MCFI is at least as secure as IFCC. The effect

of the outlying large sets on relative security remains an open question, though it

seems likely that they provide opportunities for an attacker.

LLVM-CFI 3.9 presents an interesting compromise. As the whisker plots show, it

has fewer outliers. However, it also has, on average, a greater median set size. Given

the open question of the importance of the outliers, LLVM-CFI 3.9 could well be more

secure in practice.

LLVM-CFI 3.7 - which only protects virtual tables - sets do not have extreme

outliers. Additionally, Figure 3.7 shows that the equivalence classes that are created

have a low variance, as seen by the more compact whisker plots that lack the large

number of outliers present for other techniques. As such, LLVM-CFI 3.7 does not

suffer from the edge cases that effect more general analyzes.

Lockdown consistently has the largest set sizes, as expected because it only creates

one equivalence class per library and the SPEC CPU2006 benchmarks are optimized to

reduce the amount of external library calls. These sets are up to an order of magnitude

larger than compiler techniques. However, Lockdown isolates faults into libraries as

each library has its independent set of targets compared to a single set of targets for

other binary-only approaches like CCFIR and bin-CFI.

The lower bound numbers were measured dynamically, and as such encapsulate a

subset of the actual equivalence sets in the static program. Further, each such set is

at most the size of the static set. Our lower bound thus provides a proxy for an ideal

CFI implementation in that it is perfectly precise for each run. However, all of the

IFCC variations report fewer equivalence classes than our dynamic bound.

59

The whisker plots for our dynamic lower bound in Figure 3.7 show that some

of the SPEC CPU2006 benchmarks inherently have outliers in their set sizes. For

perlbench, gcc, gobmk, h264ref, omnetpp, and xalancbmk our dynamic lower bound

and the static set sizes from the compiler based implementations all have a significant

number of outliers. This provides quantitative backing to the intuition that some code

is more amenable to protection by CFI. Evaluating what coding styles and practices

make code more or less amenable to CFI is out of scope here, but would make for

interesting future work.

Note that for namd and soplex in Figure 3.7 there is no visible data for our dynamic

lower bound because all the sets had a single element. This means the median size is

one which is too low to be visible. For all other mechanisms no visible data means

the mechanism was incompatible with the benchmark.

3.4.5 Previous Security Evaluations and Attacks

Evaluating the security of a CFI implementation is challenging because exploits are

program dependent and simple metrics do not cover the security of a mechanism. The

Average Indirect target Reduction (AIR) metric [41] captures the average reduction

of allowed targets, following the idea that an attack is less likely if fewer targets are

available. This metric and variants were then used to measure new CFI implementa-

tions, generally reporting high numbers of more than 99%. Such high numbers give

the illusion of relatively high security but, e.g., if a binary has 1.8 MB of executable

code (the size of the glibc on Ubuntu 14.04), then an AIR value of 99.9% still allows

1,841 targets, likely enough for an arbitrary attack. A similar alternative metric to

evaluate CFI effectiveness is the gadget reduction metric [45]. Unfortunately, these

simple relative metrics give, at best, an intuition for security and we argue that a

more rigorous metric is needed.

A first set of attacks against CFI implementations targeted coarse-grained CFI

that only had 1-3 equivalence classes [60–62]. These attacks show that equivalence

60

classes with a large number of targets allow an attacker to execute code and system

calls, especially if return instructions are allowed to return to any call site.

Counterfeit Object Oriented Programming (COOP) [23] introduced the idea

that whole C++ methods can be used as gadgets to implement Turing-complete

computation. Virtual calls in C++ are a specific type of indirect function calls that

are dispatched via vtables, which are arrays of function pointers. COOP shows that

an attacker can construct counterfeit objects and, by reusing existing vtables, perform

arbitrary computations. This attack shows that indirect calls requiring another level-

of-indirection (e.g., through a vtable) must have additional checks that consider the

types at the language level for the security check as well.

Control Jujutsu [107] extends the existing attacks to so-called fine-grained CFI

by leveraging the imprecision of points-to analysis. This work shows that common

software engineering practices like modularity (e.g., supporting plugins and refactoring)

force points-to analysis to merge several equivalence classes. This imprecision results

in target sets that are large enough for arbitrary computation.

Control-Flow Bending [62] goes one step further and shows that attacks against

ideal CFI are possible. Ideal CFI assumes that a precise CFG is available that is not

achievable in practice, i.e., if any edge would be removed then the program would fail.

Even in this configuration attacks are likely possible if no shadow stack is used, and

sometimes possible even if a shadow stack is used.

Several attacks target data structures used by CFI mechanisms. StackDefiler [108]

leverages the fact that many CFI mechanisms implement the enforcement as a com-

piler transformation. Due to this high-level implementation and the fact that the

optimization infrastructure of the compiler is unaware of the security aspects, an

optimization might choose to spill registers that hold sensitive CFI data to the stack

where it can be modified by an attack [109]. Any CFI mechanism will rely on some

runtime data structures that are sometimes writeable (e.g., when MCFI loads new

libraries and merges existing sets). Missing the Point [14] shows that ASLR might

not be enough to hide this secret data from an adversary.

61

3.5 Performance

While the security properties of CFI (or the lack thereof for some mechanisms)

have received most scrutiny in the academic literature, performance characteristics

play a large part in determining which CFI mechanisms are likely to see adoption and

which are not. Szekeres et al. [56] surveyed mitigations against memory corruption and

found that mitigations with more than 10% overhead do not tend to see widespread

adoption in production environments and that overheads below 5% are desired by

industry practitioners.

Comparing the performance characteristics of CFI mechanisms is a non-trivial

undertaking. Differences in the underlying hardware, operating system, as well

as implementation and benchmarking choices prevents apples-to-apples comparison

between the performance overheads reported in the literature. For this reason, we

take a two-pronged approach in our performance survey: For a number of publicly

available CFI mechanisms, we measure performance directly on the same hardware

platform and, whenever possible, on the same operating system, and benchmark

suite. Additionally, we tabulate and compare the performance results reported in the

literature.

We focus on the aggregate cost of CFI enforcement. For a detailed survey of the

performance cost of protecting backward edges from callees to callers we refer to the

recent, comprehensive survey by [110].

3.5.1 Measured CFI Performance

Selection Criteria. It is infeasible to replicate the reported performance overheads

for all major CFI mechanisms. Many implementations are not publicly available or

require substantial modification to run on modern versions of Linux or Windows. We

therefore focus on recent, publicly available, compiler-based CFI mechanisms.

Several compiler-based CFI mechanisms share a common lineage. LLVM-CFI, for

instance, improves upon IFCC, πCFI improves upon MCFI, and VTI is an improved

62

version of SafeDispatch. In those cases, we opted to measure the latest available

version and rely on reported performance numbers for older versions.

Method. Most authors use the SPEC CPU2006 benchmarks to report the overhead

of their CFI mechanism. We follow this trend in our own replication study. All

benchmarks were compiled using the -O2 optimization level. The benchmarking system

was a Dell PowerEdge T620 dual processor server having 64GiB of main memory

and two Intel Xeon E5-2660 CPUs running at 2.20 GHz. To reduce benchmarking

noise, we ran the tests on an otherwise idle system and disabled all dynamic frequency

and voltage scaling features. Whenever possible, we benchmark the implementations

under 64-bit Ubuntu Linux 14.04.2 LTS. The CFI mechanisms were baselined against

the compiler they were implemented on top of: VTV on GCC 4.9, LLVM-CFI on

LLVM 3.7 and 3.9, VTI on LLVM 3.7, MCFI on LLVM 3.5, πCFI on LLVM 3.5. Since

CFGuard is part of Microsoft Visual C++ Compiler, MSVC, we used MSVC 19 to

compile and run SPEC CPU2006 on a pristine 64-bit Windows 10 installation. We

report the geometric mean overhead averaged over three benchmark runs using the

reference inputs in Table 3.2.

63

T
ab

le
3.

2.
M

ea
su

re
d

an
d

re
p

or
te

d
C

F
I

p
er

fo
rm

an
ce

ov
er

h
ea

d
(%

)
on

th
e

S
P

E
C

C
P

U
20

06
b

en
ch

m
ar

k
s.

T
h
e

la
n
gu

ag
e

of
ea

ch
b

en
ch

m
ar

k
is

in
d
ic

at
ed

in
p
ar

en
th

es
is

:
C

(C
),

C
+

+
(+

),
F

or
tr

an
(F

).
C

F
in

a
ce

ll
in

d
ic

at
es

w
e

w
er

e
u
n
ab

le
to

b
u
il
d

an
d

ru
n

th
e

b
en

ch
m

ar
k

w
it

h
C

F
I

en
ab

le
d

.
B

la
n

k
ce

ll
s

m
ea

n
th

at
n

o
re

su
lt

s
w

er
e

re
p

or
te

d
b
y

th
e

or
ig

in
al

au
th

or
s

or
th

at
w

e
d

id
n

ot
at

te
m

p
t

to
ru

n
th

e
b

en
ch

m
ar

k
.

C
el

ls
w

it
h

b
ol

d
fo

n
ts

in
d
ic

at
e

10
%

or
m

or
e

ov
er

h
ea

d
,

n
tc

st
an

d
s

fo
r

n
o

ta
il

ca
ll
s.

B
e
n
c
h
m
a
rk

M
e
a
su

re
d

P
e
rf
o
rm

a
n
c
e

R
e
p
o
rt
e
d

P
e
rf
o
rm

a
n
c
e

V
T
V

L
L
V
M

-C
F
I

V
T
I

C
F
G
u
a
rd

π
C
F
I

π
C
F
I

V
T
V

V
T
I

π
C
F
I

IF
C
C

M
C
F
I

P
a
th

A
rm

o
r

L
o
c
k
d
o
w
n

C
-C

F
I

R
O
P
e
c
k
e
r

b
in

-C
F
I

V
e
rs
io
n

3
.7

3
.9

O
p
ti
o
n
s

L
T
O

L
T
O

L
T
O

n
tc

L
T
O

L
T
O

4
0
0
.p

e
rl
b
e
n
c
h
(C

)
2
.4

8
.2

5
.3

5
.0

1
.9

5
.0

1
5
.0

1
5
0
.0

5
.0

1
2
.0

4
0
1
.b

z
ip

2
(C

)
-0

.7
-0

.3
1
.2

0
.8

1
.0

1
.0

0
.0

8
.0

5
.0

0
.0

-9
.0

4
0
3
.g
c
c
(C

)
C
F

6
.1

1
0
.5

4
.5

4
.5

9
.0

5
0
.0

3
.0

4
.5

4
2
9
.m

c
f(
C
)

3
.6

0
.5

4
.0

1
.8

4
.0

4
.0

1
.0

2
.0

1
0
.0

1
.0

0
.0

4
4
5
.g
o
b
m
k
(C

)
0
.2

-0
.2

1
1
.4

1
1
.8

7
.5

7
.0

0
.0

4
3
.0

5
0
.0

1
.0

1
5
.0

4
5
6
.h

m
m
e
r(
C
)

0
.1

0
.7

0
.1

-0
.1

0
.0

0
.0

1
.0

3
.0

1
0
.0

0
.0

-0
.5

4
5
8
.s
je
n
g
(C

)
1
.6

3
.4

8
.4

1
1
.9

5
.0

5
.0

0
.0

8
0
.0

4
0
.0

0
.0

-2
.5

4
6
4
.h

2
6
4
re

f(
C
)

5
.3

5
.4

7
.9

8
.3

6
.0

6
.0

1
.0

4
3
.0

4
5
.0

1
.0

2
8
.0

4
6
2
.l
ib

q
u
a
n
tu

m
(C

)
-6

.9
-3

.0
-1

.0
-0

.3
0
.0

3
.0

5
.0

1
0
.0

0
.0

-0
.5

4
7
1
.o
m
n
e
tp

p
(+

)
5
.8

-1
.9

C
F

C
F

3
.8

6
.7

1
8
.8

8
.0

1
.2

5
.0

-1
.2

5
.0

2
.0

4
5
.0

4
7
3
.a
st
a
r(
+
)

3
.6

-0
.3

0
.9

1
.6

0
.1

2
.0

2
.9

2
.4

0
.1

4
.0

-0
.2

3
.5

1
7
.0

7
5
.0

0
.0

1
4
.0

4
8
3
.x
a
la
n
c
b
m
k
(+

)
2
4
.0

7
.1

7
.2

3
.7

5
.5

1
0
.3

1
7
.6

1
9
.2

1
.4

7
.0

3
.1

7
.0

1
1
8
.0

1
7
0
.0

1
5
.0

4
1
0
.b
w
a
v
e
s(
F
)

1
.0

4
1
6
.g
a
m
e
ss
(F

)
1
1
.0

4
3
3
.m

il
c
(C

)
0
.2

2
.0

-1
.7

1
.4

2
.0

2
.0

4
.0

8
.0

2
.5

4
3
4
.z
e
u
sm

p
(F

)
0
.0

4
3
5
.g
ro

m
a
c
s(
C
,F

)
1
.0

4
3
6
.c
a
c
tu

sA
D
M

(C
,F

)
0
.0

4
3
7
.l
e
sl
ie
3
d
(F

)
1
.0

4
4
4
.n

a
m
d
(+

)
-0

.1
-0

.2
0
.1

-0
.3

0
.1

-0
.3

-0
.5

-0
.5

-0
.2

-0
.5

3
.0

-2
.0

4
4
7
.d

e
a
lI
I(
+
)

0
.7

C
F

7
.9

C
F

-0
.1

5
.3

4
.4

4
.5

-2
.2

4
.5

4
5
0
.s
o
p
le
x
(+

)
0
.5

0
.5

-0
.3

-0
.6

2
.3

-0
.7

0
.9

-0
.7

-4
.0

-1
.7

-4
.0

1
2
.0

3
.5

4
5
3
.p

o
v
ra

y
(+

)
-0

.6
1
.5

8
.9

2
.0

1
0
.8

1
1
.3

1
7
.4

1
0
.5

0
.2

1
0
.0

9
0
.0

3
7
.0

4
5
4
.c
a
lc
u
li
x
(C

,F
)

3
.0

4
5
9
.g
e
m
sF

D
T
D
(F

)
7
.0

4
6
5
.t
o
n
to

(F
)

1
9
.0

4
7
0
.l
b
m
(C

)
-0

.2
4
.2

-0
.2

-0
.5

1
.0

1
.0

0
.0

2
.0

-2
.5

4
8
2
.s
p
h
in

x
3
(C

)
-0

.8
-0

.1
0
.7

2
.4

1
.5

1
.5

3
.0

8
.0

0
.5

G
e
o

M
e
a
n

4
.6

1
.1

4
.4

1
.3

2
.3

4
.0

5
.8

9
.6

0
.5

3
.2

-0
.3

2
.9

3
.0

2
0
.0

4
5
.0

2
.6

8
.5

64

Some of the CFI mechanisms we benchmark required link-time optimization, LTO,

which allows the compiler to analyze and optimize across compilation units. LLVM-CFI

and VTI both require LTO, so for these mechanisms, we report overheads relative to a

baseline SPEC CPU2006 run that also had LTO enabled. The increased optimization

scope enabled by LTO can allow the compiler to perform additional optimizations such

as de-virtualization to lower the cost of CFI enforcement. On the other hand, LLVM’s

LTO is less practical than traditional, separate compilation, e.g., when compiling

large, complex code bases. To measure the πCFI mechanism, we applied the author’s

patches4 for 7 of the SPEC CPU2006 benchmarks to remove coding constructs that are

not handled by πCFI’s control-flow graph analysis [43]. Likewise, the authors of VTI

provided a patch for the xalancbmk benchmark. It updates code that casts an object

instance to its sibling class, which can cause a CFI violation. We found these patches

for hmmer, povray, and xalancbmk to also be necessary for LLVM-CFI 3.9, which

otherwise reports a CFI violation on these benchmarks. VTI was run in interleaved

vtable mode which provides the best performance according to its authors [101].

Results. Our performance experiments show that recent, compiler-based CFI mech-

anisms have mean overheads in the low single digit range. Such low overhead is

well within the threshold for adoption specified by [56] of 5%. This dispenses with

the concern that CFI enforcement is too costly in practice compared to alternative

mitigations including those based on randomization [111]. Indeed, mechanisms such as

CFGuard, LLVM-CFI, and VTV are implemented in widely-used compilers, offering

some level of CFI enforcement to practitioners.

We expect CFI mechanisms that are limited to virtual method calls—VTV, VTI,

LLVM-CFI 3.7— to have lower mean overheads than those that also protect indirect

function calls such as IFCC. The return protection mechanism used by MCFI should

introduce additional overhead, and πCFI’s runtime policy ought to result in a further

marginal increase in overhead. In practice, our results show that LLVM-CFI 3.7 and

4The patches are available at: https://github.com/mcfi/MCFI/tree/master/spec2006.

https://github.com/mcfi/MCFI/tree/master/spec2006

65

VTI are the fastest, followed by CFGuard, πCFI, and VTV. The reported numbers for

IFCC when run in single mode show that it achieves -0.3%, likely due to cache effects.

Although our measured overheads are not directly comparable with those reported

by the authors of the seminal CFI paper, we find that researchers have managed to

improve the precision while lowering the cost5 of enforcement as the result of a decade

worth of research into CFI enforcement.

The geometric mean overheads do not tell the whole story, however. It is important

to look closer at the performance impact on benchmarks that execute a high number of

indirect branches. Protecting the xalancbmk, omnetpp, and povray C++ benchmarks

with CFI generally incurs substantial overheads. All benchmarked CFI mechanisms

had above-average overheads on xalancbmk. LLVM-CFI and VTV, which take virtual

call semantics into account, were particularly affected. On the other hand, xalancbmk

highlights the merits of the recent virtual table interleaving mechanism of VTI which

has a relatively low 3.7% overhead (vs. 1.4% reported) on this challenging benchmark.

Although povray is written in C++, it makes few virtual method calls [97]. However,

it performs a large number of indirect calls. The CFI mechanisms which protect

indirect calls—πCFI, and CFGuard—all incur high performance overheads on povray.

Sjeng and h264ref also include a high number of indirect calls which again result

in non-negligible overheads particularly when using πCFI with tail calls disabled to

improve CFG precision. The hmmer, namd, and bzip2 benchmarks on the other hand

show very little overhead as they do not execute a high number of forward indirect

branches of any kind. Therefore these benchmarks are of little value when comparing

the performance of various CFI mechanisms.

Overall, our measurements generally match those reported in the literature. The

authors of VTV [46] only report overheads for the three SPEC CPU2006 benchmarks

that were impacted the most. Our measurements confirm the authors’ claim that

the runtimes of the other C++ benchmarks are virtually unaffected. The leftmost

πCFI column should be compared to the reported column for πCFI. We measured

5Non-CFI related hardware improvements, such as better branch prediction [112], also help to reduce
performance overhead.

66

overheads higher than those reported by Niu and Tan. Both gobmk and xalancbmk

show markedly higher performance overheads in our experiments; we believe this is

in part explained by the fact that Niu and Tan used a newer Intel Xeon processor

having an improved branch predictor [112] and higher clock speeds (3.4 vs 2.2 GHz).

We ran πCFI in both normal mode and with tail calls disabled. The geometric

mean overhead increased by 1.9% with tail calls disabled. Disabling tail calls in turn

increases the number of equivalence classes on each benchmark Figure 3.6. This

is a classic example of the performance/security precision trade-off when designing

CFI mechanisms. Implementers can choose the most precise policy within their

performance target. CFGuard offers the most efficient protection of forward indirect

branches whereas πCFI offers higher security at slightly higher cost.

3.5.2 Reported CFI Performance

The right-hand side of Table 3.2 lists reported overheads on SPEC CPU2006

for CFI mechanisms that we do not measure. IFCC is the first CFI mechanism

implemented in LLVM which was later replaced by LLVM-CFI. MCFI is the precursor

to πCFI. PathArmor is a recent CFI mechanism that uses dynamic binary rewriting

and a hardware feature, the Last Branch Record (LBR) [113] register, that traces

the 16 most recently executed indirect control-flow transfers. Lockdown is a pure

dynamic binary translation approach to CFI that includes precise enforcement of

returns using a shadow stack. C-CFI is a compiler-based approach which stores a

cryptographically-secure hash-based message authentication code, HMAC, next to

each pointer. Checking the HMAC of a pointer before indirect branches avoids a

static points-to analysis to generate a CFG. ROPecker is a CFI mechanism that uses

a combination of offline analysis, traces recorded by the LBR register, and emulation

in an attempt to detect ROP attacks. Finally, the bin-CFI approach uses static

binary rewriting like the original CFI mechanism; bin-CFI is notable for its ability to

67

protect stripped, position-independent ELF binaries that do not contain relocation

information.

The reported overheads match our measurements: xalancbmk and povray impose

the highest overheads—up to 15% for ROPecker, which otherwise exhibits low over-

heads, and 1.7x for C-CFI. The interpreter benchmark, perlbench, executes a high

number of indirect branches, which leads to high overheads, particularly for Lockdown,

PathArmor, and bin-CFI.

Looking at CFI mechanisms that do not require re-compilation—PathArmor,

Lockdown, ROPecker, and bin-CFI we see that the mechanisms that only check the

contents of the LBR before system calls (PathArmor and ROPecker) report lower

mean overheads than approaches that comprehensively instrument indirect branches

(Lockdown and bin-CFI) in existing binaries. More broadly, comparing compiler-based

mechanisms with binary-level mechanisms, we see that compiler-based approaches are

typically as efficient as the binary-level mechanisms that trace control flows using the

LBR although compiler-based mechanisms do not limit protection to a short window of

recently executed branches. More comprehensive binary-level mechanisms, Lockdown

and bin-CFI generally have higher overheads than compiler-based equivalents. On the

other hand, Lockdown shows the advantage of binary translation: almost any program

can be analyzed and protected, independent from the compiler and source code. Also

note that Lockdown incurs additional overhead for its shadow stack, while none of the

other mechanisms in Table 3.2 have a shadow stack.

Although we cannot directly compare the reported overheads of bin-CFI with our

measured overheads for CFGuard, the mechanisms enforce CFI policies of roughly

similar precision (compare Figure 3.4i and Figure 3.4w). CFGuard, however, has a

substantially lower performance overhead. This is not surprising given that compilers

operate on a high-level program representation that is more amenable to static program

analysis and optimization of the CFI instrumentation. On the other hand, compiler-

based CFI mechanisms are not strictly faster than binary-level mechanisms, C-CFI

68

has the highest reported overheads by far although it is implemented in the LLVM

compiler.

Table 3.3 surveys CFI approaches that do not report overheads using the SPEC

CPU2006 benchmarks like the majority of recent CFI mechanisms do. Some authors,

use an older version of the SPEC benchmarks [33, 94] whereas others evaluate per-

formance using, e.g., web browsers [39, 91], or web servers [103, 114]. Although it

is valuable to quantify overheads of CFI enforcement on more modern and realistic

programs, it remains helpful to include the overheads for SPEC CPU2006 benchmarks.

Table 3.3. CFI performance overhead (%) reported from previous publications. A label
of C indicates we computed the geometric mean overhead over the listed benchmarks,
otherwise it is the published average.

Benchmarks Overhead

ROPGuard [115] PCMark Vantage, NovaBench, 3DMark06, Peacekeeper, 0.5%
Sunspider, SuperPI 16M

SafeDispatch [91] Octane, Kraken, Sunspider, Balls, linelayout, HTML5 2.0%
CCFIR [39] SPEC2kINT, SPEC2kFP, SPEC2k6INT C 2.1%
kBouncer [88] wmplayer, Internet Explorer, Adobe Reader C 4.0%
OCFI [94] SPEC2k 4.7%
CFIMon [114] httpd, Exim, Wu-ftpd, Memcached 6.1%
Original CFI [33] SPEC2k 16.0%

3.6 Summary

Control-flow integrity substantially raises the bar against attacks that exploit

memory corruption vulnerabilities to execute arbitrary code. In the decade since

its inception, researchers have made major advances and explored a great number

of materially different mechanisms and implementation choices. Comparing and

evaluating these mechanisms is non-trivial and most authors only provide ad-hoc

security and performance evaluations. A prerequisite to any systematic evaluation is a

set of well-defined metrics. In this chapter, we have proposed metrics to qualitatively

(based on the underlying analysis) and quantitatively (based on a practical evaluation)

assess the security benefits of a representative sample of CFI mechanisms. Additionally,

69

we have evaluated the performance trade-offs and have surveyed cross-cutting concerns

and their impacts on the applicability of CFI.

Our systematization serves as an entry point and guide to the now voluminous

and diverse literature on control-flow integrity. Most importantly, we capture the

current state of the art in terms of precision and performance. We report large

variations in the forward and backward edge precision for the evaluated mechanisms

with corresponding performance overhead: higher precision results in (slightly) higher

performance overhead.

We hope that our unified nomenclature will gradually displace the ill-defined

qualitative distinction between “fine-grained” and “coarse-grained” labels that authors

apply inconsistently across publications. Our metrics provide the necessary guidance

and data to compare CFI implementations in a more nuanced way. This helps software

developers and compiler writers gain appreciation for the performance/security trade-

off between different CFI mechanisms. For the security community, this work provides

a map of what has been done, and highlights fertile grounds for future research.

Beyond metrics, our unified nomenclature allows clear distinctions of mechanisms.

These metrics, if adopted, are useful to evaluate and describe future improvements to

CFI.

This survey of the CFI literature provides the context for our other two projects

VTrust and Data Confidentiality and Integrity (DCI). Specifically, VTrust is a special-

ized CFI, for preventing attacks on vtables in C++. VTrust’s motivation is to decrease

the number of allowed targets at virtual function call sites. DCI is concerned with the

attack surface not protected by CFI, namely non-control-data attacks.

70

4 VTRUST

4.1 Abstract

Virtual function calls are one of the most popular control-flow hijack attack targets.

Compilers use a virtual function pointer table, called a vtable, to dynamically dispatch

virtual function calls. These vtables are read-only, but pointers to them are not.

VTable pointers reside in objects that are writable, allowing attackers to overwrite

them. As a result, attackers can divert the control-flow of virtual function calls and

launch VTable hijacking attacks. Researchers have proposed several solutions to

protect virtual calls. However, they either incur high performance overhead or fail to

defeat some VTable hijacking attacks.

In this chapter, we propose a lightweight defense solution, VTrust, to protect all

virtual function calls from VTable hijacking attacks. It consists of two independent

layers of defenses: virtual function type enforcement and vtable pointer sanitization.

Combined with modern compilers’ default configuration, i.e., placing vtables in read-

only memory, VTrust can defeat all VTable hijacking attacks and supports modularity,

allowing us to harden applications module by module. We have implemented a

prototype on the LLVM compiler framework. Our experiments show that this solution

only introduces a low performance overhead, and it defeats real world VTable hijacking

attacks.

4.2 Introduction

Control-flow hijacking is the dominant attack vector to gain code execution on

current systems. Attackers utilize memory safety vulnerabilities in a program and its

libraries to tamper with existing data or prepare their own data structures in a target

71

process’ memory. When used by the program, the tampered data will redirect benign

control-flow to attacker controlled locations. Attackers usually continue by reusing

existing code sequences, e.g., Return Oriented Programming (ROP [66, 67, 116]) or

Jump Oriented Programming (JOP [117]), to gain full code execution capabilities on

the victim system, despite existing defenses like Data Execution Prevention (DEP [26]),

Address Space Layout Randomization (ASLR [15]), or stack canaries [25].

Many defense mechanisms have been proposed to protect programs against control-

flow hijacking attacks, including memory safety solutions [9, 10, 118] and Control-

Flow Integrity (CFI) solutions [33–46]. See Chapter 3 for a detailed discussion and

comparison of previous work in CFI. Memory safety solutions stop memory corruption

and provide a strong security guarantee, but with a high performance overhead (often

larger than 30%). Recent work has shown CFI is a practical approach. Researchers

have created implementations of CFI that were incorporated into GCC and LLVM [46].

The most recent operating system Windows 10 has deployed a coarse-grained CFI by

default [119]. CFI solutions typically either provide a coarse-grained protection, or

incur a high performance overhead. A control-flow hijack attack usually targets return

instructions, indirect jumps and indirect calls1 to control the program counter. Out

of these three, indirect calls, which are frequently used for virtual calls in programs

written in C++, are receiving increasing attention from attackers. For example, over

80% of attacks against Chrome utilize use-after-free vulnerabilities and virtual function

calls [120], whereas about 91.8% of indirect calls are virtual calls [46]. More than 50%

of known attacks targeting Windows 7 exploit use-after-free vulnerabilities and virtual

calls [121].

Modern compilers use a table (called vtable), consisting of virtual function pointers,

to dynamically dispatch virtual calls. Attackers may tamper with these vtables, or

pointers to them, and launch VTable hijacking attacks [19], including VTable corruption

attacks that corrupt writable vtables, VTable injection and VTable reuse attacks that

overwrite vtable pointers with references to fake or existing vtables (or even plain data).

1In rare cases, attackers may hijack the program via other instructions, e.g., iret. Such attacks are
uncommon in the real world.

72

(a) Single layer of defense for applications
 without dynamically generated code

VTab
le

In
teg

rit
y E

nfor
cem

en
t

Virt
ual

Func T
yp

e E
nfor

cem
en

t

Target Applications

(without
dynamically-

generated
code)

VTable Reuse

VTable Injection

VTable CorruptionVTable
Hijacking

layer 1layer 0

VTab
le

In
teg

rit
y E

nfor
cem

en
t

Virt
ual

Func T
yp

e E
nfor

cem
en

t

VTab
le

Poin
ter

 San
itiz

ati
on Target Applications

(with
dynamically-

generated
code)

VTable Reuse

VTable Injection

VTable CorruptionVTable
Hijacking

(b) Two layers of defense for applications
 with dynamically generated code

layer 1 layer 2layer 0

Figure 4.1. Illustration of VTrust’s overall defense. The layer 0 defense (i.e., placing vtables
in read-only sections to protect their integrity) is deployed by modern compilers by default,
and thus provides an extra layer of defense for free. The layer 1 defense enforces virtual
functions’ type at runtime. It defeats all VTable reuse attacks, and also defeats VTable
injection attacks if there are no writable code sections. The layer 2 defense enforces the
validity of vtable pointers. It defeats VTable injection attacks even if there are writable
code sections.

Modern compilers place vtables in read-only sections, defeating VTable corruption

attacks by default. But VTable injection attacks are still one of the most popular

attacks, and VTable reuse attacks are also practical and hard to defeat [23].

Researchers have proposed several defenses against VTable hijacking attacks.

SafeDispatch [91] resolves the set of legitimate virtual functions (or vtable) for each

virtual function call site at compile time, and validates the runtime virtual function

pointer (or vtable) against this legitimate set. It requires an exact class hierarchy

analysis, and involves a heavy runtime lookup operation. Moreover, it requires

recompilation of all modules when a new module is added to the application or the

inheritance hierarchy changes. Virtual Table Verification (VTV) [46] also validates

the runtime vtable against a legitimate set. It supports incremental compilation by

updating class hierarchy information at runtime, but also incurs high performance

overhead, especially when the class inheritance graph is complex. VTint [19] uses

binary rewriting to protect the integrity of vtables, and blocks corrupted or injected

vtables from being used, but fails to protect against VTable reuse attacks. Our survey

in Chapter 3 qualitatively compares these mechanisms as shown in Figure 3.4. The

research paper COOP [23] shows that VTable reuse attacks are practical and even

Turing-complete in real applications.

73

In this dissertation, we propose a lightweight solution VTrust to protect virtual

calls from all VTable hijacking attacks. It first validates the validity of virtual function

pointers, and then optionally validates the validity of vtables. As shown in Figure 4.1,

it consists of two layers of defense: (1) virtual function type enforcement and an

optional layer (2) vtable pointer sanitization. In the first layer, we instrument virtual

calls with an additional check to match the runtime target function’s type with the

one expected in the source code. Each virtual function call site is enforced to invoke

virtual functions with the same name and argument type list, and a compatible class

relationship. Ideally, this layer is able to defeat all VTable hijacking attacks, if we

can check virtual functions’ type at runtime, e.g., by utilizing RTTI (RunTime Type

Information). However, this would cause a very high performance overhead [54].

Our solution encodes the virtual functions’ type information into hash signatures,

and matches the signatures at runtime. It provides a fine-grained protection against

VTable hijacking attacks. Essentially, it is a C++-aware fine-grained CFI policy. As

far as we know, all existing signature-based CFI solutions do not utilize the name of

virtual functions and its associated class information to protect virtual calls, causing

a loss of precision. On the other hand, taking function name and class information

into consideration is not a trivial task. We are the first to present such a C++-aware

precise signature-based CFI implementation for virtual calls.

Unlike other CFI solutions [33], VTrust supports separate compilation. The

signatures can be computed within each module, without any dependency on external

modules, allowing us to harden applications module by module. It introduces a very

low performance overhead, e.g., 0.31% for Firefox and 0.72% for SPEC CPU2006. It

is able to defeat all VTable reuse attacks, including the COOP attack [23]. It is also

able to defeat all VTable injection attacks, if target applications do not have writable

code (e.g., dynamically generated code). Given that modern systems are protected

by DEP, attackers cannot overwrite read-only code to forge virtual functions with

correct signatures. Thus this layer of defense is practical and useful in the real world,

because (1) most applications do not have writable code, and (2) forging signatures in

74

writable code is hard due to defenses like ASLR and JIT spraying [122] mitigations.

We strongly recommend deploying this defense in practice.

For applications with writable code, attackers may launch VTable injection attacks,

as shown in Figure 4.1(b). Traditional signature-based CFI solutions fail to defeat

this type of attack. We provide an extra optional layer of defense, to defeat VTable

injection attacks that are launched by forging virtual functions with signatures in

writable code memory. In this layer, we ensure that each vtable pointer points to

a valid VTable at runtime by sanitizing the writable and untrusted vtable pointers.

More specifically, we encode legitimate vtable pointers when initializing objects and

decode them before virtual function calls. In this way, it blocks illegal (forged) virtual

functions from being used, by blocking illegal vtables from being used. Even if

attackers can forge virtual functions with correct signatures to bypass the first layer

of defense, they cannot call them because vtables are all sanitized.

Since this layer of defense changes the representation of vtable pointers, it ensures

we can protect all uses of vtable pointers, e.g., RTTI lookup or virtual base objects

indexing, or corner cases like custom virtual calls written in assembly. Traditional

solutions, e.g., SafeDispatch [91] and VTV [46], only cover regular virtual call instruc-

tions and are unable to identify these attack surfaces or protect them from being

exploited.

We implemented a prototype on the LLVM compiler framework and tested the

prototype on the SPEC CPU2006 benchmark [123], and the browser Firefox. The

first layer and the second layer of defense introduce an overhead of about 0.31% and

1.80% respectively for Firefox, and an overhead of about 0.72% and 1.40% respectively

for SPEC CPU2006. We also evaluated VTrust against several real world exploits

targeting browsers, as well as exploits targeting some real world CTF (Capture The

Flag) challenge programs. It showed VTrust is able to defeat them all.

In summary, our VTrust defense solution has the following key advantages:

75

code section (before hardening)heap/stack read-only data section
(default layer 0)

Sub::vf1

...

Sub::vfN

VTable for Sub::Base1

 foo:
 ; read vtptr from Base1 object.
 ; ECX points to the runtime object,
 ; it may be an object of class Sub.
 mov eax, [ecx]

 ; get vf4() from vtable
 mov edx, [eax+0x0C]

 ; call Base1::vf4()
 call edx

vtptr

data_fields

...

object of class Sub

vtptr

data_fields

...

Sub::vg1

...

Sub::vgM

VTable for Sub::Base2

C++ source code

class Base1{
 virtual void vf1(); ... virtual void vfN();
}

class Base2{
 virtual void vg1(); ... virtual void vgM();
}

class Sub: public Base1, public Base2{
 virtual void vf1(); ... virtual void vfN();
 virtual void vg1(); ... virtual void vgM();
}

void foo(Base1* obj){
 obj->vf4();
}

int main(){
 Base1* obj = new Sub();
 foo(obj);
}

code section (after hardening with VTrust)

 foo:
 ; read vtptr from Base1 object.
 ; ECX points to the runtime object,
 ; it may be an object of class Sub.
 mov eax, [ecx]

 ; VTable pointer sanitization (layer 2)
 validate_vtptr(eax)

 ; get vf4() from vtable
 mov edx, [eax+0x0C]

 ; Function type enforcement (layer 1)
 match_type(edx)

 ; call Base1::vf4()
 call edx

vtptr

data_fields

...

object of class Base1 Base1::vf1

...

Base1::vfN

VTable for Base1

(a) (b) (c) (d) (e)

Figure 4.2. Illustration of a virtual function call Base1::vf4(), including the source code
(a), the runtime memory layout (b and c) and the executable code (d), as well as the
executable code after deploying VTrust’s defense (e). The layer 2 defense is only necessary
for applications with writable code sections. The layer 1 defense is sufficient for most
applications.

• This solution is effective. It provides a fine-grained protection for virtual calls

and defeats all different VTable hijacking attacks. Case-studies show that it

defeats real world exploits.

• The defense is efficient. For applications without dynamic generated code,

it introduces about 0.72% performance overhead. For other applications, it

introduces an overhead of 2.2%.

• It has modularity support, allowing us to harden applications module by module.

Whenever a new module is added, or the class inheritance tree grows, we do not

need to recompile other modules.

• Its program analysis process is lightweight and fast. Unlike other solutions,

VTrust does not require the whole class inheritance graph of the applications.

4.3 Threat Model

We assume a powerful yet realistic attacker model. Our model gives the attacker

full control over all writable memory and allows arbitrary reads from any readable

76

memory. While being conservative, this assumption is realistic as an attacker may use

a vulnerability repeatedly, e.g., spawning threads to attack other threads.

4.3.1 Defense Mechanisms

We assume that protections against code injection and code corruption are in place

(e.g., through DEP/NX bits for non-executable regions). All current operating systems

make use of DEP. We also assume that attackers cannot remap memory regions (e.g.,

setting a vtable region writable, or setting a data region executable) to bypass DEP.

Our defense mechanism protects virtual calls only, we therefore assume auxiliary

protections for return instructions, indirect jump instructions and any other indirect

call instructions are deployed in the application. For example, we assume that the

compiler uses fixed base addresses and bound checks when compiling jump tables

(e.g., for switch statements). In other words, we assume indirect control transfers

except virtual function calls are all well-protected. Attackers cannot hijack the

control flow until they reach the virtual function calls. In addition, non-control-data

attacks [24,124] that may lead to control-flow hijacking are out of the scope of this

work.

4.3.2 Attack Surface

As specified in the C++ ABI [12], all virtual functions are dispatched through

vtables. As shown in Figure 4.2(d), a virtual function is dispatched in three steps: (i)

read the vtable pointer from the object, (ii) dereference the vtable pointer (plus the

target function’s index) to get the target virtual function pointer, and (iii) invoke the

target virtual function by indirectly calling the function pointer. The latter two steps

may be encoded in one instruction, e.g., call [eax+0x0C].

The vtable mechanism enables virtual function dispatch, access to the base class

object, and runtime type information (RTTI). However, it also introduces an attack

surface. Objects are usually allocated at runtime and stored in writable memory (e.g.,

77

on the heap or stack), so the vtable pointers are untrusted and may be overwritten by

attackers. As a result, the target virtual functions read from vtables are untrusted

and may be hijacked.

Any successful attack against virtual function calls must either (i) corrupt a

vtable or (ii) a vtable pointer, to change the target virtual function pointer. VTable

corruption attacks modify vtables directly, overwriting function pointers in vtables

with attacker-controlled values. For this attack vector the adversary directly controls

the target of the virtual function call. Modern compilers place vtables in read-only

sections, defeating this kind of attacks by default. The alternate form of attack

corrupts the vtable pointer, forcing the program to load the vtable from an alternate

location. For this attack vector, the attackers indirectly control the target virtual

function calls.

There are two flavors of the latter attack: VTable injection attacks and VTable

reuse attacks, depending on where the overwritten vtable pointers point to. In VTable

injection attacks, the adversary injects a surrogate virtual table that is populated with

attacker-controlled virtual function pointers. In VTable reuse attacks, the attacker

reuses existing vtables out of context (e.g., using a different class’ vtable or using an

offset to a vtable), or even reuses existing data as vtables.

In practice, VTable injection attacks are the most frequently used VTable hijacking

attack vector. Attackers can craft arbitrary vtables containing invalid virtual function

pointers pointing to code gadgets (e.g., ROP gadgets) or dynamically generated code

sequences (e.g., JIT spraying). Combined with ROP, VTable injection is very easy to

launch and reliable.

In VTable reuse attacks, attackers reuse existing vtables or data that looks like

vtables (i.e., an array of function pointers). The attacker redirects a virtual call of a

class A through attacker-chosen vtables to any function of any class B or any other

existing code in memory as long as there is a pointer pointing to that code. This

attack is a form of call-oriented programming (through virtual call gadgets).

78

VTable reuse attacks can bypass defenses like VTint [19]. As shown in one recent

CTF (Capture The Flag) event [125], a defense similar to VTint is deployed on one

challenge binary, and many teams have successfully bypassed this defense by launching

VTable reuse attacks.

Researchers also proved VTable reuse attacks are realistic. The COOP (Counterfeit

Object-oriented Programming) attack proposed by Schuster et.al. [23] introduces a

specific type of VTable reuse attack. By stitching several virtual functions, attackers

may execute arbitrary code. COOP shows that this attack is (i) practical in real

applications (e.g., Firefox), and (ii) Turing complete for realistic conditions.

This attack surface is even larger in applications that have writable code (e.g.,

dynamic generated code). In these applications, even if there are no legitimate vtables

or virtual functions in dynamic code memory, attackers may forge them in the dynamic

code memory and launch VTable injection and VTable reuse attacks.

Moreover, vtable pointers are not only used in virtual calls. Attackers can overwrite

vtable pointers to hijack the RTTI lookup or virtual base object indexing operations.

Unlike existing defenses, VTrust protects these other uses from attacks too.

4.4 Design

In this section, we will describe the design of VTrust. We start with an overview

of the defense solution, then explain the design of each defense layer.

4.4.1 Overview of VTrust

VTrust uses two layers of defenses to protect the integrity of virtual function calls

in-depth, as shown in Figure 4.1 and Figure 4.2.

Virtual Function Type Enforcement. VTrust ensures that the actual runtime

type of a virtual function call matches the static type declared in the source code.

In this way, attackers cannot divert virtual calls to invalid functions or code. For a

79

particular virtual call site, only functions with the correct type can be invoked, and

thus VTable reuse attacks (including the COOP attack) are infeasible. It also stops

all VTable injection attacks, if attackers cannot forge functions.

vtable pointer sanitization. VTrust sanitizes vtable pointers at runtime to enforce

vtables’ validity. So, even if attackers can tamper with the vtable pointers, they can

only make them point to the beginning of existing vtables. It thus defeats VTable

injection attacks. It also stops most VTable reuse attacks, since attackers can only

reuse existing vtables, not part of them or plain data.

The combination of these two layers of defense can protect applications from all

VTable hijacking attacks. For applications without dynamically generated code, code

pages will not be writable. This stops the attacker from creating her own vtables and

functions with forged signatures. In this configuration, VTrust’s first layer of defense,

virtual function type enforcement, is sufficient to protect against all VTable hijacking

attacks.

4.4.2 Virtual Function Type Enforcement

As a first layer of defense, we enforce that the runtime target virtual function

matches the type expected in the source code. According to the C++ specification,

the derived class will override the parent class’ virtual function if and only if it defines

a function with the same name, parameter type list (but not the return type), constant

and volatile qualifiers, and same reference qualifiers. Moreover, for each particular

virtual function call site, the object has a statically declared type (i.e., class), and

only virtual functions defined in this class or its sub-classes can be invoked.

VTrust provides a precise protection for virtual calls. It enforces that each virtual

call site’s static type to matches the invoked virtual function’s dynamic type. For the

types to match, all of the criteria from the C++ specification’s virtual function override

requirement must match in addition to the function’s class information. Otherwise,

the control-flow will be blocked.

80

More concretely, for a particular virtual function call site, all legitimate runtime

target virtual functions meet the following requirements:

• The function name must be the same, except for virtual destructor functions and

virtual calls that use class member function pointers. The destructor functions

always have the same name as the class name (except the leading character

∼). The class member function pointer may be bound to virtual functions with

different names.

• The argument type list must be identical, except for the hidden argument this

pointer that references the runtime object on which the virtual function works;

• The qualifiers must be identical, including the constant, volatile, and reference

qualifiers.

• The class relationship must be compatible. The runtime virtual function must

belong to a derived class of the static class declared on the virtual function call

site. For example, for a virtual call site that expects a virtual function from a

specific static class Foo, only virtual functions belonging to classes derived from

Foo can be invoked at runtime.

Omitting any requirements here would expose more attack surface. For example,

if we only consider the class information, then attackers may launch attacks (e.g.,

COOP) to make vtable pointers pointing to the middle of legitimate vtables, to invoke

any virtual function of any compatible class.

On the other hand, any virtual function that meets these requirements can be

legally invoked at a particular virtual call sites, per the C++ specification. So we

cannot further reduce the set of legitimate transfer targets, without breaking the

program’s functionality. In other words, this layer of defense provides the most

fine-grained protection for virtual calls.

This layer also provides a strong protection against VTable hijacking attacks. It

prevents the attacker from invoking any virtual function whose type does not match

81

the call site type. Even if attackers can control vtable pointers and make them point

to existing vtables or data (i.e., VTable reuse attacks) or even to attacker-controlled

vtables (i.e., VTable injection attacks), they cannot invoke arbitrary virtual functions.

Instead, they have to either (1) reuse existing virtual functions with correct type,

or (2) find someway of forging the virtual function and the type. However, the first

bypass is not exploitable, since it is legitimate control flow. The second bypass does

not work, if target programs do not have writable code.

In the following, we will discuss some design choices, as well as the advantages and

limitations of this solution.

Fast Runtime Matching. It would be slow to validate the type (including name,

argument type list and so on) byte by byte at runtime, especially for validating

whether a class is derived from another class. To facilitate the runtime type check,

we encode the virtual function’s type information into a word-sized signature. A

simple comparison between the expected signature (a constant) and the runtime target

function’s signature (a memory value) is sufficient to validate the function’s type.

More specifically, the signatures are statically computed (i) per virtual function

based on the function’s prototype and (ii) at the call sites based on the available

call-site information. For each virtual function, we will place the signature together

with its code. For each virtual function call site, we will instrument a security check,

to match the target function’s signature with the one expected on this call site. As

the signature generation happens at compile time, VTrust can statically ensure that

there are no collisions with other functions.

This signature-based type check provides a good runtime performance, better than

existing solutions including SafeDispatch [91], VTV [46] and RockJIT [32]. In general,

they have to check whether the runtime vtable or function is in a pre-computed set.

As a result, they need to do a slow lookup operation for each virtual call site.

Complex Inheritance Support. When generating the signature for a virtual

function, we need to decide its owner class. A virtual function definition may be

82

shared between several classes inherited from a same ancestor. But we can only place

one signature with the function. So we choose the top-most primary ancestor that

defines this virtual function’s interface as the owner class.

Assuming a virtual call site expects a virtual function Foo::func(), and the

virtual function func() is first defined in class Bar among Foo’s all ancestors, then

this virtual call site will use Bar as the owner class to compute the expected signature.

For the function Foo::func(), it also will use Bar as the owner class to compute its

signature.

Modularity Support. To compute the signatures, we only need the ancestor

information for the target class. As a result, we can generate signatures for virtual

call sites and virtual functions when compiling one single module. We can simply

analyze one module at a time, and extract the virtual function’s type and compute

signatures based on the type. This process is simple and fast. Moreover, it has natural

modularity support, allowing us to compile target applications module by module.

When the class inheritance changes or a new module is added, the default incremental

compilation model is sufficient to update everything.

On the other hand, solutions like SafeDispatch and VTV all need the descendant

classes information for each class to perform the checks. It thus requires a whole-

program analysis, either by compile-time analysis or runtime merging, to get the

knowledge of the complete class hierarchy. As a result, our solution has a better

compile-time analysis speed and modularity support.

Dynamic Loading Support. Our defense supports dynamic loading. Whether or

not a new library is loaded, each virtual function’s signature and each virtual call

site’s expected signature will not change. In other words, even if the class inheritance

graph may change, our solution remains effective without the need to update any

runtime information.

83

Solutions like VTV have to load runtime information to update the class inheritance

hierarchy, when loading a new module. However, this process can be done with

initializer functions themselves, without modifying the dynamic loader.

Limitations. Similar to traditional signature-based CFI solutions, this layer of

defense is also vulnerable if attackers can forge code with correct signatures, i.e., the

target application has writable code. Our solution VTrust can defeat this kind of

attack, by deploying an extra layer of defense: vtable pointer sanitization.

Moreover, the way we determine a virtual function’s owner class also leaves some

attack surface. For example, suppose (1) class Grand is Parent’s primary base class, (2)

Parent is Child’s primary base class, and (3) the virtual function func is first defined

in Grand, then for a virtual call site which requires Child::func, the virtual functions

Grand::func and Parent::func are also allowed, since they share a same top-most

primary base class Grand. In practice, this should leave only a small attack surface,

as all these virtual functions (e.g., Grand::func, Parent::func and Child::func)

by design should perform a similar action (i.e., generating similar output and side-

effects for the same input) but only in different ways. VTV also has a similar attack

surface [126].

Furthermore, similar to SafeDispatch and VTV, our solution also faces a compati-

bility issue when an external unhardened library is loaded into the process (e.g., by

invoking the system call dlopen). For unhardened libraries, there are no signatures

associated with its virtual functions, and the security checks we added to the current

application will fail if the external virtual function is used. We also deploy a fail-safe

error handler similar to the one used in VTV. If an unhardened library is used, we

build a whitelist of target virtual functions. When the security check fails, the error

handler will go through this whitelist, checking whether the target virtual function is

in the list. If not, a security violation alert is thrown.

In summary, this layer of defense defeats all VTable reuse attacks, including the

COOP attack. It can also defeat all VTable injection attacks if target applications have

84

no writable code. Essentially, it is a C++-aware fine-grained CFI policy. Comparing

with other solutions for C++ programs, it is much faster in compile-time analysis and

runtime execution. It also has natural modularity support without added complexity,

as well as a good dynamic loading support. So, we strongly recommend deploying

this layer of defense in practice.

4.4.3 VTable Pointer Sanitization

As discussed in the previous section, for applications supporting dynamic code

generation, attackers may bypass the first layer of defense by launching VTable

injection attacks and utilizing dynamically generated code to forge virtual functions

with correct types (i.e., signatures). As a result, we introduce a second layer of defense,

to limit the source of virtual functions. More specifically, we sanitize the vtable

pointers to enforce that they point to valid vtables, and thus only existing virtual

functions can be invoked on a particular virtual call site.

One straightforward solution is to enforce the integrity of vtable pointers. But

unlike vtables themselves, vtable pointers cannot be set to read-only, because these

pointers are usually members of objects that are on the writable heap or stack. In

order to enforce their integrity, we have to track data-flow at runtime, and prevent all

memory write operations from overwriting vtable pointers. Obviously, this solution

results in unacceptable performance overhead.

Instead, we enforce the validity rather than the integrity of vtable pointers. Our

solution enforces the runtime vtable pointers to be valid, even if attackers have

tampered with them. Existing defenses all fall into this category. VTint [19] checks

whether the target vtable is read-only and T-VIP [127] works in a similar way. They

both fail to defeat some attacks (e.g., COOP). SafeDispatch [91] and VTV [46] check

whether the runtime vtable is in a pre-computed legitimate vtable set, introducing

high performance overhead.

85

lib_idx local_idx

Low High

local_map1_size

local_map1_addr

...

local_mapN_size

local_mapN_addr

vtable1_ptr

vtable2_ptr

...

vtableM_ptr

... ...

global_vtmap

One copy of global VTMap local VTMap for each library

virtual_func1

virtual_func2

...

virtual_funcK

...

VTable Pointer

VTable Index

Figure 4.3. VTable pointer sanitization solution. Each vtable pointer will be encoded
to a vtable index consistinf of a lib idx and a local idx. A global VTable pointer map
(pointed by global vtmap) will be used to decode vtable indexes.

We propose a novel solution to enforce vtable pointers’ validity, by encoding vtable

pointers into vtable indexes when initializing them and decoding vtable indexes when

they are accessed (e.g., for virtual calls). In this way, even if attackers can control the

vtable pointers in objects, these pointers will first be decoded before being used in

virtual calls. As a result, only valid vtables can be used to perform the virtual calls.

A straightforward encoding and decoding solution works in this way: we maintain

a whitelist of all legitimate vtable pointers, encode each vtable pointer to an index of

this whitelist when assigning vtable pointer to objects, and decode the vtable pointers

(i.e., indexes) that are read from the runtime objects to the original pointers by using

the whitelist. This solution is simple and can defeat all VTable injection attacks.

However, it does not support shared libraries. For example, when a vtable is defined

in a shared library, its pointer can hardly be encoded to a unique index, because this

library may be used in different applications, i.e., this vtable pointer may be recorded

in several whitelists.

Instead, we use a separate whitelist (denoted as local VTMap) for each single

library, as well as a global map (denoted as global VTMap) to perform the vtable

pointer encoding and decoding. As shown in Figure 4.3, each vtable pointer will be

86

encoded into a vtable index (i.e., an integer of the bit width same as the platform),

consisting of two sub-indexes of the same bit width: (1) a lib idx that represents the

index (to the global VTMap) of the library that uses this vtable; and (2) a local idx

that represents the index (to the local VTMap) of the vtable inside the library. When

decoding a vtable index, we use its lower half (i.e., lib idx) to retrieve the local

VTMap’s address from the global VTMap, then use its upper half (i.e., local idx)

to retrieve the vtable pointer from the local VTMap.

When compiling a single library, we can build the local VTMap for it, and assign

an index local idx to each vtable that is used in current library. These indexes are

all statically assigned, so that the library can be shared among different applications

without modifications. Then we can statically compute the library’s index lib idx,

either by (1) manually specifying or (2) automatically scanning existing libraries

indexes and computing a different one.

The global VTMap of each application must be initialized at runtime. Whenever a

library is loaded, its local VTMap’s address will be registered in this global VTMap, at

the specific entry numbered with lib idx. We also store the size of the local VTMap

into the global VTMap, for further bound checks when accessing the local VTMaps. As

a result, this solution provides a good support for incremental compilation and dynamic

loading. Similar to virtual function type enforcement, it may cause incompatibility

issues when working with unhardened libraries that have vtables.

This layer essentially provides a whitelist protection. Although attackers may

overwrite the vtable pointers, the pointers will be decoded (and therefore validity

checked) before being used in virtual calls. As a result, this defense defeats VTable

injection attacks. We emphasize that, this layer of defense also provides partial

protection against VTable reuse attacks, even if the first layer of defense is absent.

It enforces that only legitimate vtables can be used for virtual calls. So attackers

can only reuse existing vtables, rather than any other data or the middle of existing

vtables on which the COOP attack is based. However, in theory, attackers may still

87

LLVM Opt

*.cpp LLVM IR

(metadata)

Clang/
Clang++

LLVM IR

(checks)

LLVMgold.so

*.obj

LLVM CodeGen

VTLib.so

*.cpp VTable
metadata
Collector

VTLib.cpp

executable/
libraries

ld.gold

layer 1:
VFunc Type
Enforcement

(part 2)

layer 2:
VTable
Pointer

Sanitization

layer 0
double
check

layer 1:
VFunc Type
Enforcement

(part 1)

Figure 4.4. Illustration of VTrust’s workflow. The first layer of defense is implemented as a
compile-time optimization pass and a code generation step. The second layer of defense is
implemented as a link-time optimization pass.

launch some VTable reuse attacks by only reusing existing vtables. Therefore, both

defense layers are needed to prevent attacks.

Limitations. Our solution for selecting lib idx can avoid conflicts when all code

is compiled on the same machine. If code is compiled on different machines, it is

not possible to statically determine a unique lib idx by manual specification or by

scanning for other libraries. This is an engineering challenge we plan to address in

future work.

One possible solution is to have the library loader resolve the conflicts like it does

for relocation. In fact, conflicts should not be that common in practice, as the number

of possible values of lib idx is much larger than the number of libraries a typical

application links against. Another solution is to use the library name rather lib idx

to index the local VTMap, which eliminates the conflicts but makes the runtime

decoding a little slower.

Alternative VTable Pointer Sanitization Solutions. We also tested a range

check solution to validate VTable pointers. It records all legitimate VTable sections’

address ranges, updates this information when libraries are loaded and unloaded, and

validates whether the runtime VTable falls in any of these address ranges. However,

this alternative is not precise as the VTable encoding and decoding solution we

discussed earlier, and also has a higher performance overhead.

88

C++ source code

typedef void (Base::*base_fptr)(void);

void test_foo(Base* obj, base_fptr fptr){
 (obj->*fptr)();
}

void main(){
 Base* obj1 = new Base();
 base_fptr fptr = &Base::foo1;
 test_foo(obj1, fptr); // virtual call #1

 Base* obj2 = new Sub();
 fptr = &Base::foo2;
 test_foo(obj2, fptr); // virtual call #2

 obj2->foo2(); // virtual call #3
}

(a)

executable code (virtual function body)

 dd signature_without_name
 dd signature1
Base::foo1:
 ...
 ret

(b)

 dd signature_without_name
 dd signature2
Base::foo2:
 ...
 ret

executable code (virtual call site)

test_foo:
 ...
 ; assume EAX is the target virtual function
 cmp [eax-8], signature_without_name
 jnz ERROR
 call eax ; virtual call #1 and #2
 ...
 ret

(c)

main:
 ...
 ; assume EAX is the target virtual function
 cmp [eax-4], signature2
 jnz ERROR
 call eax ; virtual call #3

 ret

Figure 4.5. Illustration of the class member function pointer issue and solution. Here, virtual
functions Base::foo1 and Base::foo2 have a same function type but different name. We
instrument an extra signature that is computed without function name before the function
body. For virtual call sites that use class member function pointers, we compare this special
signature instead of the signature with function names.

4.5 Implementation

We have implemented a prototype of VTrust using the LLVM [128] compiler suite

version 3.4 for x64.

Figure 4.4 shows the workflow of VTrust. In general, there are four steps in our

implementation.

First, we collect vtable related information of the current compilation unit in the

compiler frontend (i.e., Clang++), including all virtual functions, all vtable constants,

all virtual call instructions, as well as all vtable assignment and read operations. It is

worth noting that we do not need to collect the class inheritance information during

the compilation, unlike SafeDispatch [91] and VTV [46].

This information is kept in the form of LLVM metadata and function attributes, and

passed to the optimizer and linker. Some optimizations may remove or replace some

LLVM instructions, e.g., the instruction combination optimization. When instructions

are removed, some LLVM metadata may be discarded, which causes problems in

our link-time analysis. In our prototype, we keep multiple copies of metadata in

different instructions when compiling, as well as in the compilation module. During

89

the link-time analysis, we will perform a cross verification to detect such metadata

missing issues, and recover the metadata automatically based on other copies.

Second, we instrument type signature checks before virtual call instructions (i.e.,

the first layer of defense) when performing compile-time optimization.

Third, we utilize LLVM’s link-time optimization support (based on the linker’s

gold plugin feature) to deploy our second layer of defense. More specifically, we encode

and decode the vtable pointers before use.

Finally, we instrument type signatures before the body of each virtual function

(for the first layer of defense) during code generation. We also verify that all vtables

are placed in read-only sections (i.e., layer 0 defense).

We also provide a runtime library VTLib.so for some runtime APIs used by the

security checks that we instrumented. All the hardened modules are then linked

together by the gold linker, generating the final executable or libraries.

4.5.1 Virtual Function Type Enforcement

In the first layer of defense, VTrust will enforce that each runtime virtual function

has a matching type (i.e., the name, argument type list, qualifiers, and class informa-

tion) with the one expected on a virtual call site. To make the runtime check more

efficient, we encode the type information into a word-sized hash value. This hash

value is used as the signature for each virtual function, and is compared before the

virtual function call site. If they do not match, a security violation is detected and

the program is terminated.

For each virtual function, we collect its type information from the frontend, compute

its signature, and embed this signature right before the function body when generating

the native code for this function.

For each virtual function call site, we collect the expected type and compute the

expected signature. VTrust will then instrument a security check before this virtual

call to match the function’s runtime signature against the expected one.

90

Computing the signature based on a type information is easy, but collecting the

type information is not. The qualifiers and argument list type are deterministic.

However, the virtual function name and the class information are not.

• First, we cannot get a meaningful function name for virtual destructor functions.

The derived class’ virtual destructor function will overload the parent class’

virtual destructor function, i.e., they use the same slot in the vtables. But they

have different function names. For example, assuming Foo is derived from Bar,

then their virtual functions use a same slot in the vtable, but with different

names: ∼Foo and ∼Bar.

• Second, we cannot use the virtual function’s owner class’ information (e.g., name)

to compute the signature. For a virtual function call site, we only know a static

class. At runtime, the target virtual function may belong to another class. These

two classes are often different and their names do not match.

• Third, we cannot get a meaningful function name for virtual call site that uses

class member function pointers. As shown in Figure 4.5, the virtual call in

function test foo does not have a meaningful name.

For the first two issues, similar to choosing owner class for virtual functions as

discussed in Section 4.4.2, we choose the destructor name of the top-most primary

ancestor class among all its ancestors that defined virtual destructors.

For each virtual function in a class, there is one slot in the per-class vtable. If

a derived class overrides a virtual function, then the overrider takes the slot at the

same offset in the vtable of the derived class. The text in black in Figure 4.6 shows

the basic vtable building algorithm used in LLVM. In general, the primary base class

initializes the vtable first, and the derived class then updates the vtable slots with

overrider functions and extends it with new functions.

Based on this basic algorithm, for each virtual function, we can easily retrieve the

function name and class name of the top-most primary class that defines this function.

91

1 addVTableMethods(TgtClass):

2 BaseClass = PrimaryBase(TgtClass)

3 # recursive invocation

4 addVTableMethods(BaseClass)

5 # all overrider virtual functions

6 for overrider in TgtClass:

7 updateVTableEntry(overrider)

8 oldFunc = get_overriden_func(overrider)

9 if isVirtualDestructor(overrider):

10 ancestorFuncName = get_func_name(oldFunc)

11 register_func_name(overrider , ancestorFuncName)

12 ancestorClassName = get_class_name(oldFunc)

13 register_class_name(overrider , ancestorClassName)

14 # all new virtual functions

15 for newFunc in TgtClass:

16 appendVTableEntry(newFunc)

17 if isVirtualDestructor(newFunc):

18 register_func_name(newFunc , ’~’+TgtClass)

19 register_class_name(newFunc , TgtClass)

Figure 4.6. VTable Building and Type Collection Algorithm (Python-style pseudocode).
Text in orange is the code we instrumented to collect type information for virtual
functions.

As shown in Figure 4.6, for each overrider function, we use the overridden function’s

name and class information. It is worth noting that, we use the information from the

top-most primary class that first defines the virtual function, not from the top-most

primary class of the static class (declared in the virtual call site). These two may be

different since an object may contain several vtables, due to multiple inheritance.

In this way, we can compute the signature of the type without the complete class

inheritance tree. We can collect all the information when the compiler builds the

vtable. It makes our compile-time analysis very fast. Moreover, if the programmer

extends the class inheritance tree in the future, we do not need to recompile existing

modules.

For the third issue, we instrument special security checks for virtual call sites

that use class member functions. It reads the signature from a different offset to

92

the function body, which is computed without the function name information. This

signature still has the class information, as well as the function prototype information,

and thus is strong enough.

4.5.2 VTable Pointer Sanitization

In the second layer of defense, VTrust will sanitize vtable pointers at runtime, to

enforce they are valid. More specifically, we will encode vtable pointers when they are

assigned to objects, and decode them when they are used.

VTable Pointer Encoding. When analyzing a module (i.e., a library or executable

since we are working on link-time optimization), we discover all vtable pointer assign-

ment operations, including (1) assigning vtable pointers to runtime created objects in

constructor functions; (2) filling vtable construction tables (VTT, an auxiliary data

structure for complex class inheritance) with vtable pointers; (3) assigning vtable

pointers to static typeinfo objects that are used for RTTI; and (4) assigning vtable

pointers to some constant static objects. It is worth noting that, for the latter three

cases, there are no assignment instructions. Instead, the compiler will directly put the

vtable pointer at the proper location.

For each of these vtable pointer assignments, we will replace the pointer with a

(statically computed) constant index. As discussed in Section 4.4.3, this index consists

of two parts: an index local idx to the local library’s VTMap, and the index lib idx

to the global VTMap. We use the order of each VTable pointer in the library as

its local idx, and use the build order of each library as its lib idx (after scanning

existing libraries and fixing conflicts). As a result, we can compute the constant index

for each vtable pointer at link-time. After encoding, the vtable pointer of each runtime

object will be a constant integer.

We create a global VTMap array, which will at runtime hold all loaded libraries’

local VTMaps’ addresses, in the support library VTLib.so for each application. For

each library, we add an initialization function and a local VTMap array. The local

93

VTMap stores addresses of all vtables used in the current library. The initializer

function is invoked automatically when the library is loaded, and registers the local

VTMap to the global VTMap. More specifically, it updates the global VTMap’s

lib idx-th entry to store the size of the local VTMap and its runtime address. This

runtime update operation temporarily maps the global VTMap as writable when

loading a library. Most applications only load libraries during initialization, therefore

the risk of being attacked during this short time window is low.

VTable Pointer Decoding. After encoding the VTable pointers, we have to decode

them at runtime, when the object’s VTable pointer is read out and used for (1) accessing

virtual function pointers for virtual calls; (2) accessing offsets of virtual base objects;

or (3) accessing RTTI information.

To decode vtable pointers, we first parse the vtable index that is read from the

runtime object into two parts: local idx and lib idx. Then we use the library index

lib idx to access the global VTMap, and get the library’s local VTMap’s address

and size.

If the lib idx is larger than the global VTMap’s size, or the local idx is larger

than local VTMap’s size, we raise a security violation exception and terminate the

program. Otherwise, the local idx is used to access the local VTMap, to get the

value of the vtable pointer. Finally, this decoded pointer is used for virtual calls. In

this way, even if attackers can overwrite the runtime vtable pointers, e.g., by exploiting

use-after-free vulnerabilities, only vtables in the local VTMaps can be used in virtual

calls after decoding.

This solution changes the representation of vtable pointers and will cause incom-

patibility issues if some libraries are not instrumented. But it covers all vtable uses

and protects them from attacks. For example, if there are custom virtual calls written

in assembly, as shown in the evaluation, traditional defenses may fail to protect them.

94

4.6 Summary

VTrust is a layered defense mechanism for preventing vtable-based attacks in C++.

Virtual function type enforcement ensures that the type signature of the dynamic

callee function matches the expected static signature at the call site. vtable pointer

sanitization ensures that the vtable pointer of an object points to a valid vtable.

Together these approaches prevent vtable attacks even when the application uses JIT.

VTrust is implemented as an LLVM pass and runtime library. The pass identifies

every virtual function call and inserts the virtual function type enforcement check

before each one (and optionally the vtable pointer sanitization check). The allowed

virtual function targets are determined based on the class hierarchy and function

signature. The pointer sanitization check is implemented by enumerating the valid

vtables and checking if the vtable pointer points to one of them.

95

5 DATA CONFIDENTIALITY AND INTEGRITY

5.1 Abstract

Applications written in C/C++ are prone to memory corruption, which allows

attackers to extract secrets or gain control of the system. With the rise of strong

control-flow hijacking defenses, non-control data attacks have become the dominant

threat. As vulnerabilities like HeartBleed have shown, such attacks are equally

devastating.

Data Confidentiality and Integrity (DCI) is a low-overhead non-control-data pro-

tection mechanism for systems software. DCI augments the C/C++ programming

languages with annotations, allowing the programmer to protect selected data types.

The DCI compiler and runtime system prevent illegal reads (confidentiality) and writes

(integrity) to instances of these types. The programmer selects types that contain

security critical information such as passwords, cryptographic keys, or identification

tokens. Protecting only this critical data greatly reduces performance overhead relative

to complete memory safety.

Our prototype implementation of DCI, DataShield, shows the applicability and

efficiency of our approach. For SPEC CPU2006, the performance overhead is at most

16.34%. For our case studies, we instrumented mbedTLS, astar, and libquantum to

show that our annotation approach is practical. The overhead of our SSL/TLS server

is 35.7% with critical data structures protected at all times. Our security evaluation

shows DataShield mitigates a recently discovered vulnerability in mbedTLS.

96

5.2 Introduction

Preventing memory vulnerabilities in C/C++ code is a well-researched topic, but the

widely adopted protection mechanisms focus on control-flow hijack attacks, neglecting

non-control-data attacks. In a control-flow hijack attack, the attacker diverts the

program’s intended control-flow. However, in non-control-data attacks, the program

execution follows a valid path through the program, but the data is controlled by the

attacker.

Mature control-flow defenses – such as Stack Cookies [25], Address Space Layout

Randomization (ASLR) [15], DEP [26], and Control-flow Integrity (CFI) [33] – are

widely deployed. Next generation control-flow protection mechanisms such as CFI

and Code-Pointer Integrity [118] are widely researched and are being deployed in

production systems. For example, Microsoft’s Control-Flow Guard [100] and LLVM-

CFI [129] are available in production compilers. See Chapter 3 for a detailed survey

of previous work in CFI. As these defenses improve, attackers will follow the path

of least resistance and shift to non-control-data attacks, which are not prevented by

any of the above mechanisms. As the high-profile HeartBleed bug showed [130], non-

control-data attacks are as harmful as control-flow hijack attacks [24,107,131]. In fact,

the Control-Flow Bending [62] non-control-data attack can achieve Turing-complete

computation even with CFI protection in place.

Complete memory safety mechanisms stop both control-flow hijack attacks and

non-control-data attacks, but have not been widely adopted. CCured [5], Cyclone [4],

WIT [132] and SoftBound [9] are all different approaches that retrofit C/C++ with

some form of memory safety, but (i) impose prohibitively high performance overhead

and (ii) may run into compatibility issues with legacy code. In general, determining if a

C/C++ program is memory safe is undecidable, so any complete protection mechanism

must fall back, at least in part, to runtime checks. This requirement puts an intrinsic

lower bound on the overhead of any complete memory protection mechanism. For this

97

reason, we argue that program-wide precise memory protection imposes too much

overhead for wide adoption.

We introduce Data Confidentiality and Integrity (DCI) to address these challenges.

DCI limits the performance overhead by tagging data as either sensitive or non-

sensitive, enforcing precise spatial and temporal safety checks only on sensitive data.

For non-sensitive data, DCI only requires coarse bounds and imprecise temporal safety.

Coarse checks can be performed with low overhead, avoiding expensive metadata

lookups. The programmer specifies which data is fully protected and the DCI compiler

and runtime enforces the security policy. In this way, DCI allows the programmer to

control the overhead/protection trade-off. The DCI policy is:

(i) Memory safety for sensitive data: Pointers to sensitive objects can only be

dereferenced if they point within the bounds of the associated (valid) memory object.

(ii) Sandboxing for non-sensitive data: Pointers to non-sensitive objects can be

dereferenced if they point anywhere except a sensitive memory object.

(iii) No data-flow between sensitive and non-sensitive data: Explicit data-flow

between sensitive memory objects and non-sensitive memory objects is forbidden.

Sensitive and non-sensitive objects must reside in disjoint memory regions.

This policy provides spatial and temporal memory safety for sensitive data at

runtime, and ensures both confidentiality and integrity of the sensitive data.

Our implementation of DCI, DataShield, consists of three key parts. First,

DataShield provides a language the programmer uses to specify protection. The

language is a small set of annotations that are added to existing C/C++ code. Second,

compiler instrumentation identifies the sensitive variables and associated data-flows,

and rewrites the program with additional security checks. Third, the runtime system

creates and maintains the metadata.

98

Table 5.1. Performance Overhead of existing memory safety mechanisms (as reported
by the authors).

Protection Benchmarks Avg. Overhead (%)
CCured SPECINT95 81.75
CCured Olden 44.33
Cyclone N/A 38.25
SoftBound SPEC2000, Olden 67

5.3 Motivation

In the following sections we: (i) discuss the performance overhead of memory safety,

(ii) explain the relationship between memory safety, integrity, and confidentiality, and

(iii) show that non-control-data attacks are not prevented by existing low-overhead

defense mechanisms.

5.3.1 Memory Safety Overhead

The absence of memory errors is in general undecidable statically for C/C++.

Any mechanism guaranteeing memory safety must (at least partially) fall back on

dynamic checks and maintain metadata. While several mechanisms have been pro-

posed with varying efficiency, they all require a runtime component that imposes

some overhead [16]. Table 5.1 shows the average overhead of four existing complete

safety mechanisms (as reported by the authors). The purpose of the table is not to

compare the techniques with each other, but to show there is significant overhead for

each mechanism. Straightforward comparison is impossible, since they use different

benchmarks, computer architectures, software versions, and operating systems.

5.3.2 Memory Safety, Integrity, and Confidentiality

Data integrity and confidentiality are ensured by enforcing memory safety for both

reads and writes through pointers. An integrity violation occurs when an attacker

99

uses a pointer to write outside the intended memory object, while a confidentiality

violation occurs when the attacker uses a pointer to read outside the intended object.

5.3.3 Non-Control-Data Attacks

To date, security researchers and attackers have primarily focused on control-flow

hijack attacks. Such attacks were effective and simple to execute before protection

mechanisms were in place. Stack Cookies [25], ASLR [15], and DEP [26] enforce

code integrity and give probabilistic guarantees against code reuse attacks. The

adoption of these defenses mitigated simple attacks, e.g., stack smashing or shell

code injection. Attackers responded by moving to code reuse attacks, such as return-

oriented programming [116, 117]. Following the same pattern, when CFI (or CPI)

mechanisms [32, 43, 45, 46, 91, 98, 103, 118] become widely deployed, attackers will

shift from control-flow hijack attacks to the next available form of attack, namely

non-control-data attacks.

Non-control-data attacks [62, 107, 131] are harder to detect because only the

data differs between benign and malicious executions. For example, to exploit the

HeartBleed bug, the attacker sends a malicious request. For a benign request, the

server echoes back the message. However, the attacker’s malicious request causes a

buffer overflow, because the value of the length field in her request is longer than the

content [130]. The result is that the server sends back unintended additional data.

The server’s response includes the original message plus the data past the end of the

message buffer. The exploit is devastating when the data after the buffer is sensitive,

like a private encryption key.

While HeartBleed is an example of a confidentiality violation, non-control-data

attacks can also result in integrity violations. For example, overwriting the user ID

variable with the value of the administrator’s user ID is one way to perform a privilege

escalation attack. To prevent all non-control-data attacks we need both confidentiality

and integrity of sensitive data. Neither of these attacks are caught by any of the

100

mentioned defense mechanisms. Since non-control-data attacks can slip past these

defenses and complete memory safety is too costly, we need new tools targeted at

providing data protection with low overhead.

5.4 Threat Model

Our threat model assumes that the attacker can exploit the original benign program

to perform arbitrary reads and writes through attacker-controllable memory errors.

We assume the system is protected from code injection (or modification) attacks by

DEP [26]. We assume that another protection mechanism is in place in the system

to prevent control-flow hijacking. Side-channel attacks that leak information from

the sensitive region are out of scope. The operating system, our compiler, and our

instrumentation are in the trusted computing base (TCB).

5.5 Design

The key idea behind DCI is that we need protection against non-control-data

attacks, but not all data in a program is equally important in terms of security. Relaxing

the protection on the non-sensitive memory objects allows us to reduce the overhead

of our protection mechanism relative to complete memory safety. Specifically, the non-

sensitve checks are more efficient, and no metadata is tracked for non-sensitive objects.

DCI ensures that despite the presence of memory vulnerabilities, the confidentiality

and integrity of sensitive data is preserved.

Determining the subset of sensitive data is a pivotal decision. The current DCI

implementation uses a programmer specification to describe which data is sensitive.

While it would seem ideal to instead use a sophisticated static analysis to automatically

infer sensitive data, the programmer intuitively has domain knowledge that is not

available to a compiler or a static analyzer.

DCI separates the memory into two regions, a precisely protected region for

sensitive data and a coarsely protected region for non-sensitive data. The mechanism

101

enforces this separation and forbids any pointers from the non-sensitive region to the

sensitive region. The DCI policy requires sensitive data to be precisely bounds checked

in the same manner as complete memory safety. However, the policy relaxes the

requirement for non-sensitive data. Pointers to non-sensitive data can be dereferenced

if they point anywhere except a sensitive memory object. Such coarse bounds checking

for non-sensitive data lowers overhead. Our policy requires coarse bounds checking

(sandboxing) non-sensitive data as otherwise, an attacker could access sensitive data

through a corrupted non-sensitive pointer. Thus, we must have a check on every pointer

dereference, regardless of whether that pointer points to sensitive or non-sensitive

data [14].

Finally, data-flow between variables in different regions is forbidden. This policy

applies to primitive variables, pointers, and contents of aggregate types. This rule

means that an object itself (struct, array, etc.) and all its sub-objects (members,

elements, etc.) have the same sensitivity. This property is enforced at compile time

by separating all variables into one of two disjoint sets – the sensitive set or the

non-sensitive set.

Any attempt by the attacker to modify the sensitive data with a non-sensitive

pointer, as well as a buffer overflow or use-after-free inside the sensitive region, causes

our system to abort the program. An attacker may still modify sandboxed data

through non-sensitive pointers, as the security policy does not protect such data.

5.5.1 Determining the Sensitive Types

DCI requires the programmer to specify which data is sensitive. A recent study

showed that annotation burden is a primary factor affecting developers use of con-

tracts [133], which are similar to our annotations. A survey of 21 open source projects

that use contracts found that over 33% of program elements (classes or functions)

were annotated [134]. For large code bases, annotating functions individually does not

scale.

102

To mitigate the annotation burden problem, we design our protection specification

to be type-based. When the programmer annotates a type, all instances of that type

are sensitive. Annotating a type in effect annotates every function that uses that

type as a parameter and every local or global variable of that type. This way, a small

number of annotations give a specification for the entire program.

For example, to mark all instances of struct circle in the entire program as

sensitive, the programmer would mark any instance with our provided annotation:

1 __attribute__ ((annotate("sensitive")))

2 struct circle c;

This has the effect of enabling sensitive protection to:

1. instances of struct circle and their contents;

2. instances of other types that contain struct circle as a member.

Implicit Sensitivity

A key design decision is how to handle interactions between non-sensitive and

sensitive variables. The compiler can reject the program (and display an error message

to the programmer) or it could automatically make the variable implicitly sensitive.

To minimize annotation burden DataShield defaults to the second option.

Implicit sensitivity potentially leads to more variables being sensitive than the

programmer expects, but greatly reduces the number of required annotations. To

mitigate the problem of the programmer not knowing exactly what variables are

sensitive, the compiler can report a list of sensitive variables and types to which

protection was propagated. The programmer can then either iteratively modify the

program or the sensitivity specification.

103

5.5.2 Sensitivity Rules

This section formalizes the sensitivity rules. To prevent data-flow between sensitive

and non-sensitive variables, the first rule forbids direct interaction between variables

of different sets.

1. x [op] y is only allowed when

sensitivity(x) = sensitivity(y)

where [op] can be any binary operator. Unary operators do not change the sensitivity

of their operand.

Constants take on the protection of their other operand:

2. sensitivity(x [op] c) ← sensitivity(x)

where c is any constant.

These rules are sufficient for primitive values, but there are additional rules for

pointers:

3. For pointers p and q, if q is based on p

sensitivity(q) ← sensitivity(p)

4. For pointer p and its pointee *p,

sensitivity(p) ← sensitivity(*p)

Here “based on” means that q is the result of pointer arithmetic on p. The additional

pointer rules mean that the contents of a struct have the same sensitivity as a pointer

to the struct and array elements have the same sensitivity as the array itself.

The final policy rules are:

5. Sensitive pointers can only be dereferenced within the bounds of a valid sensitive

object.

6. Non-sensitive pointers cannot be dereferenced within the bounds of a sensitive

object.

104

Non-sensitive Data

Sensitive Data

Bounds & Temporal Metadata

Non-sensitive Region
Coarse bounds

No temporal safety

Sensitive Region
Precise bounds
Temporal Safety

Regions Boundary

High Memory

Low Memory

Figure 5.1. DataShield’s runtime memory layout for sensitive and non-sensitive data.
The sensitive region has a strict security policy that leads to instrumentation overhead,
and the non-sensitive region has a relaxed security policy with minimal overhead.

Rule 5 prevents overflows between sensitive objects, and as side effect prevents

overflows to non-sensitive variables as well (since they are out of bounds of the original

sensitive object). It also prevents dereferencing pointers to sensitive objects when

they point to unallocated memory (temporal errors). Rule 6 prevents overflows from

non-sensitive objects to sensitive objects.

5.5.3 Enforcement

At runtime, DCI divides memory into two regions, associates metadata with each

sensitive pointer in the program, and performs a check before each pointer dereference.

A conceptual memory layout is shown in Figure 5.1.

The non-sensitive region simply contains all the non-sensitive data. The sensitive

region holds both sensitive data and the metadata for the sensitive pointers.

Whenever a new sensitive memory object is allocated, the bounds of that object

and a temporal check key are recorded as metadata. When a new non-sensitive object

105

is allocated, no metadata is recorded because non-sensitive pointers have the implicit

bounds of anywhere except a sensitive object and no temporal safety. Both sensitive

and non-sensitive allocations use a custom allocator to ensure the new object resides in

the appropriate region. Pointers in sensitive memory are restricted to point within the

bounds of their intended memory object by checking their value against the associated

metadata, while non-sensitive pointers may point anywhere in the non-sensitive region.

The relaxed policy for non-sensitive pointers leads to more efficient checks and less

metadata.

5.6 Implementation

DataShield implements DCI by extending the LLVM compiler. At a high-level, the

compile-time portion of DataShield consists of collecting sensitive types, identifying

sensitive variables and inserting new instructions to enforce the DCI policy. The new

instructions create metadata, and perform sensitive or non-sensitive bounds checks.

The runtime initializes the metadata data structure and implements the checks and

region-based allocators. The compiler portion is implemented as an LLVM pass in

4,500 lines of C++ code. The DataShield runtime is 1,000 lines of C code.

5.6.1 Identifying Annotated Types

Most C/C++ compilers, including GCC and clang/LLVM, already have an an-

notation facility built in, requiring only minor modifications to support the type

annotations that DataShield requires.

Our first pass scans all the code in a module, recording the annotated types as

sensitive. When the programmer adds an annotation to her code, it appears in the

LLVM IR as metadata. Identifying the set of sensitive types is as simple as parsing

the metadata.

106

Global1 Global2 Param1 Param2

Global1->foo Global1->bar Param1->buz Param2->baz

Sensitive UnkownKey: Discovered Undiscovered

Global1 Global2 Param1 Param2

Global1->foo Global1->bar Param1->buz Param2->baz

Global1 Global2 Param1 Param2

Global1->foo Global1->bar Param1->buz Param2->baz

2

3

1

Figure 5.2. An example the sensitivity analysis. In iteration 1, only the sensitivity of
globals and of function parameters are known. Then, the analysis applies abstract
interpretation over the function body’s instructions, discovering new relationships and
adding variables into the sensitive set. The analysis concludes when a fixed point is
reached in iteration 3. Arrows indicate that connected boxes must be in the same set
according to the DCI policy rules.

5.6.2 Identifying Sensitive Variables

Once our implementation has identified the sensitive types, the compiler locates

variables of those types. Declared variables of the sensitive types form the roots of the

data-flow graph. The complier explores every execution path adding new variables to

the sensitive set.

The data-flow analysis that finds all the explicitly and implicitly sensitive variables

is inter-procedural and context-sensitive. It is a fixed-point analysis where we iteratively

add more variables to the sensitive set. This analysis is depicted in Figure 5.2.

At the start of the analysis, only global variables and function arguments of the

sensitive types are in the sensitive set. Variables that have data-flow with other

variables in the sensitive set are unioned into the sensitive set. In our formalization,

lowercase letters denote variables and uppercase letters denote types. We use the

107

notation x ∈ Sens to denote the variable x is in the sensitive set, and the notation

sensType(T) = true to denote that any of the following are true:

• T is annotated as sensitive;

• pointers to T are annotated as sensitive;

• T is a member of another type U that is annotated as sensitive type;

• T has a member of another type U that is annotated as sensitive type.

Note that the definition is recursive. For instance assume (i) a program has types

T , U , and V , and (ii) V is a member of U and U is a member of T . Then if sensType()

is true for any of the types, then it is true for all three.

Pointers to primitive types (e.g., void*, int*, char*, or float*) are handled

specially. We assume that the programmer does not intend to make all instances of,

e.g., char* sensitive. If the programmer annotates a type which has a char* member,

only char* based on the (sensitive) parent type are explicitly sensitive. Instances of

char* that are not members of sensitive types are considered non-sensitive initially,

but can become implicitly sensitive when our analysis discovers data-flow with other

sensitive variables. This approach reduces the amount of primitive types (and broadly

data at runtime) that need to be sensitive.

The analysis proceeds by abstract interpretation over the function’s LLVM IR

instructions, applying the transfer function in Figure 5.3. For brevity, we show only a

subset of interesting instructions. The abstract domain for a given variable is whether

it belongs to the sensitive set or not. Once a variable belongs to the sensitive set it

can never leave the set. The rest of the instructions simply union the sensitivity of

their operands. The one exception is LLVM’s CallInst, as calling a function with

mixed sensitivity arguments is legal under our policy. For instance, it could be that

the mixed sensitivity arguments do not interact with each other inside the function

body. Alternatively, if the mixed sensitivity arguments do interact, the non-sensitive

arguments will be promoted to implicitly sensitive when the callee function is analyzed.

108

T x = LoadInst(T* a)

if sensType(T) ∨ a ∈ Sens ∨ x ∈ Sens
then Sens ∪ {x, a}

StoreInst(T x, T* y)

if sensType(T) ∨ x ∈ Sens ∨ y ∈ Sens
then Sens ∪ {x, y}

T x = BitcastInst(U a)

if sensType(T) ∨ sensType(U) ∨ x ∈ Sens ∨ a ∈ Sens
then Sens ∪ {x, a}

Figure 5.3. Abstract interpretation transfer function for finding implicitly sensitive
variables. Other instructions simply propagate sensitivity.

The BitCastInst instruction propagates sensitivity in both directions and never

removes sensitivity. If a non-sensitive pointer is cast to sensitive, or a sensitive pointer

is cast to non-sensitive, both the original and cast pointers are considered sensitive.

When a callee function with sensitive arguments is discovered by the analysis, we

clone a new version of that function which will be reanalyzed and rewritten with

the appropriate sensitivity. At the original call site, the call to the original function

is replaced with a call to the newly cloned function. The per-call site cloning is

crucial because the same function may be called in different contexts with different

argument sensitivities. For example, let there be a function with the signature: “void

foo(void* p);”. It is valid to call foo with the parameter p as any pointer type,

and more relevantly to us, with a sensitive or non-sensitive pointer.

When the analysis concludes, every variable is either sensitive or non-sensitive.

The analysis yields a conservative over-approximation of the sensitive set which, by

design, will never lead to a security violation. Putting new variables into the sensitive

set only enables precise bounds checking for more variables (at potentially increased

performance overhead).

109

5.7 Runtime

At runtime, DataShield separates the sensitive and non-sensitive memory objects

by creating two separate memory regions. The non-sensitive region resides in the lower

memory addresses up to a fixed address, which is the highest possible non-sensitive

address. DataShield uses 232 − 1 as the end of the non-sensitive region, but this is a

configurable parameter. The sensitive memory region resides in the remaining memory

addresses above the non-sensitive region.

While the boundary between the regions is fixed, data within the regions need not

be stored at any fixed address. This means that our approach remains compatible

with randomization techniques (e.g., ASLR).

Sensitive and non-sensitive heap- and stack-allocated variables are moved to

the corresponding region. For the current implementation, the non-sensitive region

contains a dedicated heap and stack, but there is no sensitive stack. All sensitive

stack allocations are rewritten as sensitive heap allocations, so sensitive pointers are

only stored in the sensitive heap or in registers. There is nothing inherent in the DCI

policy that requires this implementation choice.

In addition to the two memory regions, DataShield needs a data structure for

storing bounds and temporal metadata for sensitive memory objects. We store this

metadata disjoint from the actual sensitive data to preserve the memory layout. This

follows the approach of SoftBound [9], and allows system calls that take sensitive

variables to work without modification. A detailed diagram of the memory layout and

pointer-to-bounds metadata mapping is shown in Figure 5.4. Note that the bounds

for the non-sensitive objects in Figure 5.4 are conceptual and so are the absolute

addresses shown. Non-sensitive object bounds are not actually stored in the metadata

table, they are hard coded in the coarse bounds check instructions. For a thorough

discussion of the merits of disjoint metadata please see Nagarakette et al. [16]. To

bounds check each sensitive pointer we need to store the base and last addresses,

meaning we must save 16 bytes for each sensitive pointer. Note from the figure that

110

Metadata

Non-sensitive
data

Sensitive	
object

0x300

0x300:	[0x200,	0x220)	

0x200

index:	[base,	end)	

Sensitive	
Pointer	A

0x0:	[0x0,	0xff)	

0xff
0xff:	[0x0,	0xff)	

.

.

.

0x210:	[0x310,	0x320)	

0x200

0x220
Sensitive	Pointer	B 0x210

0x0

Figure 5.4. Detailed memory layout, showing the mapping between bounds and
sensitive pointers using the pointer’s address.

bounds are created and checked for sub-objects if the type of the sub-object is a

sensitive pointer. Sensitive Pointer A and Sensitive Pointer B have their own bounds

in this example.

Though unavailable in the current prototype, temporal metadata can be stored in

the same metadata table. A discussion on temporal safety is in Section 5.7.6.

The runtime must protect the integrity of the metadata table. If the attacker

could modify it, she could cause memory errors in the sensitive region. For the current

prototype, the metadata table is stored inside the sensitive region. Keeping metadata

in the sensitive region allows the coarse bounds check we apply to non-sensitive

pointers to protect both the sensitive data and the metadata table.

5.7.1 Sensitive Globals and Constants

Normally, all constants and global data are loaded together by the program loader.

However, to enforce the same security policy for global data as for heap and stack data,

we use a linker script to map the sensitive and non-sensitive globals into their respective

regions. After the sensitivity analysis finishes, sensitive globals and constants are

111

marked with custom section names which are recognized by our linker script. Any

non-sensitive globals are mapped to an address below the sensitive/non-sensitive region

boundary. Sensitive globals and constants are instead mapped to an address above

the boundary, and metadata is created for them in effectively the same manner as any

other sensitive object.

5.7.2 Instruction Rewriting

The instruction rewriting step occurs after the sensitive variable analysis where the

sensitivity of every variable is known. Before every pointer dereference, the compiler

inserts the appropriate bounds check depending on the sensitivity of the pointer.

Allocations are replaced with calls to our region-based allocators (based on dl-

malloc1) that ensure the allocated memory is in the correct sensitive or non-sensitive

region.

5.7.3 Rewriting for Non-Sensitive Variables

We have implemented three types of coarse-grained bounds checks. DataShield

inserts one of the three following coarse bounds check types, depending on the

target processor and configuration, before every non-sensitive pointer dereference. All

implementations enforce strong isolation. Considering recent advances in breaking

information hiding [14,135], our prototype avoids information hiding.

Software Mask. The software mask check has the widest compatibility. It only

requires the target processor to have an and instruction. To mask a non-sensitive

pointer, an and instruction with a pre-determined value is inserted before the pointer

dereference. The mask clears the higher bits of the pointer, preventing the resulting

value from pointing into the sensitive region before it is dereferenced.

Intel MPX Bounds Check. Intel MPX adds hardware support for bounds

checking, including 4 bounds registers (bnd0–bnd3) and 7 new instructions. At

1http://g.oswego.edu/dl/html/malloc.html

112

program startup, our runtime initializes the bnd0 register with the bounds of the

non-sensitive region. The compiler inserts a bndcu instruction prior to every non-

sensitive pointer dereference. The bndcu instruction checks the given pointer value

against the upper bound stored in the given bounds register. In our case, it checks

the pointer against the bounds of the non-sensitive region. By utilizing the 4 bounds

registers, DataShield can support up to 4 non-sensitive regions (e.g., to sandbox

different untrusted components) and the non-sensitive regions can reside anywhere in

memory.

Address Override Prefix. An address override prefix before an instruction tells

the processor to treat address operands as 32-bit values. An instruction with the

address override prefix cannot access the sensitive region (since the sensitive region

is above 232 in this configuration). This bounds check is supported by any x86-64

processor. On x86-32 processors, previous work used segmentation registers [118], but

segments are no longer enforced in x86-64.

5.7.4 Rewriting for Sensitive Variables

Bounds information is created when sensitive memory objects are allocated. The

base and last addresses of the allocated object are recorded in the metadata table.

Bounds metadata is propagated to other pointers on assignment. For example,

extending our struct circle example above:

113

1 struct circle *c1 , *c2;

2

3 // creates bounds information:

4 // base = address returned by malloc

5 // last = base + sizeof(struct circle)*10 -1

6 c1 = malloc(sizeof(struct circle)*10);

7

8 // c2 gets assigned the bounds information

9 // (base and last) from c1

10 c2 = c1;

Prior to every occurrence of a sensitive pointer dereference, the compiler inserts

a precise bounds check. The precise bounds check consists of a metadata table look

up based on the address of the pointer, and a comparison of the sensitive pointer

value with the upper and lower bound retrieved from the table. The coarse bounds

enforcement for non-sensitive pointers is much faster than the precise bounds check

for sensitive pointers because it consists of at most a single instruction (compared to

several instructions and a memory access for the precise bounds check).

5.7.5 Standard Library Instrumentation

For complete protection, we must instrument both the application itself and the

libraries the application uses. DataShield provides instrumented versions of musl2 for

the C standard library, and libc++3 for the C++ standard library.

For compatibility, DataShield supports shared libraries, as they are used more

commonly in practice than statically linked libraries. The issue with shared libraries

is that they are compiled separately and ahead of time, without knowledge of the

applications the library will be linked against. Since we cannot know all settings the

2https://www.musl-libc.org
3http://www.libcxx.llvm.org

114

library will be used in, we also cannot know if data-flow in an application will cause

a particular library variable to be sensitive. We have two options to address this

problem.

Option 1: Two Versions of Each Library. We compile two shared versions of

each standard library, one that treats all data as sensitive and another that treats all

data as non-sensitive. During compilation of the application, each call to the library

is directed to the appropriate version, depending on the sensitivity of the arguments.

Note that merging shared state between the two compiled library instances becomes

challenging.

Option 2: Drop-in Replacement. We compile a drop-in replacement for the

default system standard library, i.e., a single shared library that works with programs

compiled with and without DataShield’s instrumentation. To achieve this, we relocate

all library objects to the non-sensitive region and do not insert any checks in the

library. Internal checks in the library would fail when linked against applications not

compiled with DataShield.

In our evaluation, we use Option 2. Benchmark programs typically make few

standard library calls, so checks in libraries should not have a measurable effect on

overhead.

Option 2 makes all library data non-sensitive, so application code that deals with

non-sensitive data can directly use the library. However, with Option 2, the application

cannot pass sensitive data to, or read sensitive data from, the library. Instead, we

created wrappers for the standard library functions that propagate metadata (e.g.,

memcpy), and return pointers to library allocated memory objects (e.g., getenv.) The

functions that return pointers to library allocated objects return pointers to safe

region copies. Copies are made during program startup, so there is no opportunity

for the attacker to corrupt the sensitive copy. Option 2 offers the added security of

bounds checks in the application itself, while still allowing our libraries to be drop-in

replacements.

115

5.7.6 Limitations

Our DataShield prototype does not support bounds or temporal checks of variadic

arguments (a limitation shared with related work). This is an engineering issue,

because for non-variadic functions we use the function signature to match the function

arguments between the caller and callee. However, the variadic function may retrieve

the variadic arguments in arbitrarily complicated ways. A straight-forward solution

to this problem requires adding an argument to the variadic function prototypes and

dynamically reading this new argument when va arg is called to get the variadic

arguments. This new argument would specify the number of arguments and the

bounds and temporal metadata for each argument at the specific call site. A similar

approach was proposed (but not implemented) in SoftBound [9]. In contrast, it is

completely safe to pass non-sensitive pointers to variadic functions. We consider all

non-sensitive pointers to have the same metadata, so we side-step the problem of

matching up arguments to metadata across the caller/callee boundary.

Temporal metadata checking and tracking is not enforced in our current prototype.

We could extend our prototype with temporal safety in the same manner that CETS [10]

added temporal safety to SoftBound [9]. Following this plan, adding full temporal

safety is an engineering effort.

The prototype does provide some temporal protection in that even if a pointer

points to deallocated memory, it is impossible for a new object of the wrong sensitivity

to be allocated in the pointed-to location. Concretely, given some sensitive pointer P ,

if free(P) is called, the memory pointed to by P will be available to be reallocated.

The most harmful type of temporal error occurs when a new object of a different type is

allocated to where P points. However, DataShield mitigates this by guaranteeing that

only sensitive objects will be allocated to where P points. The attack surface is limited

by requiring a temporal error to exist in the portion of the program that uses sensitive

data. Or in the case where there is only one sensitive type, DataShield provides

region-based temporal safety analogously to DieHard(er) and Cling [50,51,136].

116

5.8 Summary

The DCI policy fully protects sensitive data while relaxing the requirements for

non-sensitive data. This relaxation allows us to optimize the safety checks compared

to complete memory safety. The prototype implementation of DCI, DataShield, is

implemented using the LLVM compiler framework. The compiler pass identifies

sensitive variables and inserts new instructions to perform checks and maintain

metadata. The new instructions call DataShield’s runtime library and DataShield can

compile instrumented versions of the C/C++ standard libraries.

117

6 EVALUATION

In this chapter, we evaluate our implementations for efficiency and security. Our

primary benchmark for measuring performance is the SPEC CPU2006 suite, which

is standard in language-based security research. Additionally, select other pieces of

software that are widely used (e.g., browsers) or security critical (e.g., cryptographic

libraries). Evaluating security is challenging and we take the approach of examining

case studies of known vulnerabilities or attacks to assess if our mechanisms mitigate

them. First, we evaluate VTrust, second we evaluate the implementation of DCI

(DataShield) and finally we summarize our results.

6.1 Evaluation Plan

To evaluate the runtime overhead induced by our instrumentation we compile

our benchmark programs with and without our instrumentation, run them, and

compare the time it takes to execute the program in each configuration. For VTrust,

our benchmarks will be the SPEC CPU2006 programs that are written in C++ and

the Firefox web browser. For DataShield, our benchmarks are the SPEC CPU2006

programs written in C/C++ and the cryptographic library mbedTLS.

Whenever possible we want to measure the components that contribute to the

totally overhead of our instrumentation. For each mechanism, we present multiple

configurations that provide different levels of protection and may be more appropriate

depending on the level of overhead desired, hardware platform, or application.

To evaluate security guarantees, we search for CVEs that have been found in our

benchmark programs and proof-of-concept exploits for these vulnerabilities. We then

perform the exploit with our instrumentation enabled and verify the attack is detected.

118

6.2 VTrust

We evaluate our prototype implementation on the SPEC CPU2006 benchmarks

and the open source web browser Firefox, to test our prototype’s runtime performance

and security. Additionally, we measure the attack surface of our benchmark programs

by collecting virtual function call statistics.

6.2.1 Virtual Call Statistics

First, we measure the attack surface of VTable hijacking attacks by gathering

virtual call related metrics for these benchmarks, Our results show that a large attack

surface exists in real applications. Consequently, defenses like our solution VTrust

should be deployed as soon as possible.

Statistics for SPEC CPU2006. Table 6.1 shows the total number of runtime

indirect control flow transfers for SPEC CPU2006 benchmarks that include C++ code,

and the static count of vtables and virtual calls. At runtime, indirect calls comprise

between 1% and 33% of all indirect control-flow transfers. So, it is important to deploy

defenses like VTrust to harden these applications.

We also found that, the proportion of return instructions is high for all benchmarks,

calling for an efficient stack protection mechanism (which is orthogonal to our work).

Table 6.1. Virtual call related statistics for SPEC CPU2006 benchmarks written in
C++. The unit M stands for millions, and B stands for billions.

Runtime Profiling Static Count
#inst iCall iJump Return vtbl. vcall

444.namd 39M 1.17% 37.74% 61.08% 3 2
447.dealII 43B 1.01% 27.33% 71.66% 115 200
450.soplex 144M 3.78% 41.03% 55.19% 51 495
453.povray 29B 24.30% 2.43% 73.27% 48 112
471.omnetpp 22B 11.19% 18.63% 70.18% 127 1431
473.astar 15B 32.95% 0.07% 66.98% 2 0
483.xalanc. 36B 24.42% 7.81% 67.78% 29 4284

119

Moreover, we found that many indirect control flow transfers at runtime only have

a single target. In our runtime profiling, an average of 26% indirect calls, 85% of

indirect jumps, and 44% of return instructions only have one runtime target. Such a

high number of control transfers with a single target indicates that a localized caching

strategy, e.g., devirtualization and inline caching [137], might be an interesting future

opportunity for optimization. This optimization not only improves the runtime perfor-

mance, but also reduces some attack surfaces. VTV [46] showed the devirtualization

can greatly improve the runtime performance.

Statistics on Firefox. Table 6.2 shows parts of the vtable-related information in

the browser Firefox. We collect these information during compile-time optimization,

and thus only libraries or executables are evaluated. The data of all object files are

not included here. There are 39 libraries and executables in Firefox, but only the

12 libraries with the most vtables are listed in this table. The rest are omitted for

brevity.

Columns 2-4 shows the vtable related information. The second column shows

the count of vtables in each library (or executable). The library libxul.so has 15,801

vtables, indicating that there are thousands of classes in Firefox.

The third column shows the count of vtable pointer assignments. vtable pointers

are usually assigned to runtime created objects in the constructor functions. In

each constructor function, it may assign multiple vtable pointers to the objects due

to multiple inheritance. The library libxul.so has 26,212 vtable pointer assignment

operations, indicating that Firefox has thousands of constructors. For each vtable

pointer assignment, the optional second layer of VTrust statically encodes the pointer

to a constant index before it is assigned to the object.

The fourth column shows the count of vtable pointer read operations. Before

accessing vtables (e.g., for virtual calls or RTTI), the vtable pointers will be read from

the objects first. VTrust will decode these pointers at runtime. The library libxul.so

has 72,874 vtable pointer read operations.

120

Table 6.2. VTable-related statistics of Firefox, including the count of (1) vtables, (2) vtable
pointer assignments, (3) vtable pointers read operations, and (4) call instructions, as well as
the ratio of indirect calls to call instructions, and the ratio of virtual calls to indirect calls.

library/ VTable Call Instruction
executable # assign read call iCall vCall
makeconv 173 470 1831 62625 6.66% 42.85%

genrb 173 473 1831 68429 6.35% 41.10%
icuinfo 173 470 1844 66600 6.35% 42.40%

genccode 173 470 1831 61037 6.81% 42.95%
gencmn 173 470 1831 61051 6.81% 42.95%
icupkg 175 476 1845 63197 6.89% 41.36%

pkgdata 175 476 1845 64363 6.75% 41.43%
gentest 174 471 1846 66640 6.35% 42.42%

gennorm2 179 478 1837 61831 6.78% 42.73%
gendict 174 472 1831 60896 6.83% 42.94%

js 1420 1991 3626 262502 23.26% 5.87%
libxul.so 15801 26212 72874 1720021 15.21% 27.48%

Most of these vtable pointer read operations are used for virtual calls. As shown

in this table, there are 71,892 virtual calls (=1,720,021*15.21%*27.48%), close to the

count of vtable pointer read operations. The remaining three columns in the table

show the count of call instructions, the ratio of indirect calls to call instructions, and

the ratio of virtual calls to indirect calls. It shows that about 40% of indirect calls are

virtual calls, which is very high.

From this table, we can see that there is a large attack surface in Firefox. Attackers

can find a lot of useful vtables and virtual call sites to launch VTable hijacking attacks.

As the paper [23] discussed, it is practical to launch COOP attack in Firefox.

6.2.2 Performance Overhead

We have evaluated the performance overhead of VTrust on the SPEC CPU2006

benchmarks and the Firefox web browser.

Runtime Performance on SPEC CPU2006. To evaluate the performance over-

head of VTrust we applied it to the SPEC CPU2006 benchmarks that are written

121

0.00%	

1.00%	

2.00%	

3.00%	

4.00%	

5.00%	

6.00%	

xa
lan
c.	

ast
ar	

om
ne
tpp
	

so
ple
x	

de
alI
I	

na
md
	

po
vra
y	

Ge
o.M

ea
n	

TypeEnforce	

VTableSanCze	

Figure 6.1. Performance overhead of VTrust on SPEC CPU2006, when enabling only the
first layer of defense (virtual function type enforcement), or only the second layer (vtable
pointer sanitization).

in C++. There are seven C++ benchmark programs in the SPEC CPU2006 suite.

We ran the benchmarks under Ubuntu 14.04 LTS on a computer with an Intel Core

i7-3770 with eight cores @ 3.40 GHz Processor and 16 GB RAM.

Our current prototype implementation of vtable pointer sanitization only works

with the C++11 compatible library libcxx provided by LLVM, which has some

compatibility issues with the 471.omnetpp and 447.dealII benchmarks. All other

benchmarks and configurations work well. The overhead for virtual function type

enforcement is very low, on average 0.72%. The worst case’s overhead is about 2.7%.

The average overhead for vtable pointer sanitization is 1.4%, and the worst is 5.2%.

The average overhead of these two layers together is 2.2%, and the worst case is 8.0%.

Performance on Firefox. We also measure the performance overhead on a Fire-

fox (version 34.0). We use six popular browser benchmarks, including Microsoft’s

LiteBrite [138], Google’s Octane [139], Mozilla’s Kraken [140], Apple’s Sunspider [141],

RightWare’s BrowserMark [142] and PeaceKeeper [143], to test browsers’ performance

on JavaScript execution, html rendering and html5 support.

122

-‐0.50%	

0.00%	

0.50%	

1.00%	

1.50%	

2.00%	

2.50%	

3.00%	

3.50%	

Lit
eB
rit
e	

Kra
ke
n	

Su
ns
pid
er	

Bro
ws
erm

ark
	

Oc
tan
e	

Pe
ac
eK
ee
pe
r	

Ge
o.M

ea
n.	

TypeEnforce	

VTableSaniHze	

Figure 6.2. Performance overhead of VTrust on Firefox, when enabling only the first layer
of defense (virtual function type enforcement), or only the second layer (vtable pointer
sanitization).

We tested the browser using Ubuntu 14.04 on a computer with an Intel Core

i7 with 12 cores @ 3.7 GHz Processor and 16GB RAM. We tested the performance

overhead of VTrust’s first and second layer separately.

As shown in Figure 6.2, the first layer of defense (i.e., virtual function type

enforcement) introduces negligible performance overhead. On average, the performance

overhead is about 0.31%. In the worst case, its performance overhead is about 1.05%.

The overhead is so small that in some cases it is even negative. We attribute these

fluctuations to caching effects, code layout, or system noise.

The second layer of defense (i.e., vtable pointer sanitization) introduces higher

performance overheads. It has a performance overhead of about 1.81% on average. In

the worst case, it introduces a performance overhead of 3.21%.

For applications with dynamically generated code (e.g., Firefox), we enforce both

layers of VTrust. The performance overhead is close to the accumulation of the

overheads of the first layer and the second layer. For example, if we enable both of

these two defenses, it introduces an average performance overhead of 2.2%, close to

the sum of the standalone virtual function type enforcement’s overhead 0.31% and

the overhead of vtable pointer sanitization 1.81%.

123

Practical Experience with Firefox. Firefox uses some tricks to support multi-

ple platforms, and interactions between JavaScript and C++ code. It implements

several special virtual functions nsXPTCStubBase::StubNN, where NN is a number

ranging from 0 to 249, by using inline assembly code with mangled names (e.g.,

ZN14nsXPTCStubBase6StubNNEv). The linker automatically resolves these virtual

functions by name at runtime. So, the frontend compiler (e.g., Clang/Clang++)

does not know the existence of these functions. As a result, VTrust fails to include

signatures before these functions, causing false alarms when they are used at virtual

call sites that have been instrumented with the first layer of defense. As a workaround,

we modify the security violation handler to check whether the target is in the set of

special virtual functions (for this application), when a security violation is detected.

Moreover, Firefox also has a special virtual call site, which is simulated in a special

function NS InvokeByIndex. This function will get an object and a method index as

arguments, then do a simulated virtual function call: (1) it reads the vtable pointer

from the argument object; (2) it reads the function pointer from the vtable using the

method index; and (3) it calls the target method. This in fact is a virtual function

call site, but the compiler frontend is not aware of it. As a result, VTrust fails to

instruments checks, including the second layer of defense, for this call site. At runtime,

encoded vtable pointers will be used here, and will then cause compatibility issues.

We can identify this kind of corner cases, and instrument them with VTrust. It is

worth noting that, all other existing defenses, including VTV and SafeDispatch, fail

to identify this kind of corner cases, leaving them still vulnerable to VTable hijacking

attacks.

6.2.3 Performance Comparison

Among all existing solutions that provide a strong protection against VTable

hijacking attacks, VTV [46] has the lowest performance overhead. Other solutions,

124

e.g., SafeDispatch, vfGuard and RockJIT, introduce a much higher performance

overhead, which will be discussed in Table 8.1.

For the worst case SPEC benchmarks astar and xalanc, VTV introduces a

performance overhead of 2.4% and 19.2% respectively, while VTrust introduces a

comparable performance overhead of 3.7% and 7.9% respectively when enabling both

two layers of defenses. An important point is that while the VTV paper reports

a “lower bound” of 4.7% overhead on xalanc, this is not a valid comparison to

VTrust. VTV’s “lower bound” configuration uses profile guided optimization (PGO),

de-virtualization, and replaces the bodies of the VTV library functions with stubs. We

do not consider PGO practical for complex software or a fair technique for benchmarks

with a small number of input datasets, like the SPEC CPU2006 benchmarks. In fact,

the VTV authors admit Chrome cannot be built with with PGO and de-virtualization.

For the browser benchmark sunspider and octane, VTV introduces an overhead of

1.6% and 2.6% respectively when deployed on Chrome, while VTrust introduces an

overhead of 2.8% and 1.5% respectively. So, VTrust introduces a similar performance

overhead as VTV.

VTV validates the runtime vtable against a legitimate set that is updated when

loading libraries are loaded. This validation needs to (1) dynamically update the

legitimate set for each virtual call when a library is loaded, (2) resolve the split-set

problem when a vtable set is created, and (3) perform a slow set lookup operation

to validate the runtime vtable. Since the library loading usually finished before

benchmark testing, and thus its overhead is not easy to evaluate. Moreover, when the

legitimate set’s size is large, which is the common case for classes with many derived

classes, it will take a longer time to do the runtime lookup.

Our solution VTrust has a negligible overhead of library loading. It only validates

the signatures of target functions, and decodes the vtable pointers before they are

used. It costs a constant time for each virtual call, and is faster than VTV in general.

More important, for applications without dynamic code, VTrust only validates the

125

signatures of target functions, which is much faster. So, in general, VTrust is faster

than existing solutions.

Further, we can compare VTrust’s overhead with all of the mechanisms from our

CFI survey as shown in Table 3.2. On average, VTrust has lower overhead than the

other mechanisms. However, the most useful comparison is VTrust against other

virtual function call specific CFI mechanisms. We would expect mechanisms that

protect all indirect calls to have higher overhead, in general, than mechanisms that

only protect virtual calls.

6.2.4 Memory Overhead

We evaluated the memory overhead on Firefox in two scenarios: after a cold start

and after running a sample benchmark.

After a cold start, the original Firefox uses about 130MB memory (resident set

size, RSS). The hardened version Firefox uses about 133MB memory. The absolute

memory overhead is about 4MB, and the relative memory overhead is about 3.1%.

Most of the memory overheads are from (1) the instrumented security checks

including the type enforcement checks and vtable pointer decoding instructions, (2)

the instrumented local VTMaps and the global VTMap that are used for vtable pointer

encoding and decoding, (3) the instrumented signatures before each virtual function’s

body, and (4) the runtime supporting library VTLib.so, introduced by VTrust.

For example, there are 71892 virtual calls in the library libxul.so, and each virtual

call costs about 40 bytes for the security checks. As a result, the security checks in this

library takes about 2.9MB. Moreover, there are 15801 vtables in this library, taking

about 128KB memory.

After running Firefox for a while, e.g., after testing the Kraken benchmark, the

original Firefox uses about 299MB memory. The hardened Firefox uses about 303MB

memory. The absolute memory overhead is still 4MB, close to the memory overhead

in the cold start scenery. The relative memory overhead drops to 1.3%. Our solution

126

Table 6.3. Public VTable hijacking exploits against Firefox.

CVE-ID Exploit Type Vul App Protected

CVE-2013-1690 VTable injection FF 21 YES
CVE-2013-0753 VTable injection FF 17 YES
CVE-2011-0065 VTable injection FF 3 YES

VTrust does not use runtime allocated memory, so its absolute memory overhead stays

constant.

6.2.5 Case Study: Real World VTable Injection Attacks

To evaluate the effectiveness of VTrust, we choose three public real world vtable

hijacking exploits. These exploits are publicly available and all target the popular

browser Firefox by exploiting use-after-free vulnerabilities. They all inject fake vtables

and hijack the control flow. This is the most common VTable hijacking attack seen

in practice. Table 6.3 shows details for these exploits, including the CVE-ID, target

Firefox version, and the type of the exploits.

Experiments are carried out in a virtual machine running Ubuntu 14.04. For each

exploit, we download the vulnerable Firefox’s source code and compile it with VTrust.

After hardening Firefox, we drive the browsers to access malicious URLs containing

exploits. Results show that all the exploits we collected are blocked. Therefore, VTrust

successfully protects applications from VTable injection attacks.

6.2.6 Case Study: Real World VTable Reuse Attacks

Since it is much easier to launch VTable injection attacks than VTable reuse

attacks and no defenses against these attacks have been deployed, there are few

VTable reuse attacks in real world. We found only one such case, besides the COOP

attack published recently. In a recent Capture The Flag event [125], there is one

challenge program (i.e., zhongguancun) that deploys a similar defense as VTint [97].

127

It checks if the runtime vtable is writable. If yes, it terminates the program. The only

way to hijack its control flow is through VTable reuse attacks.

More specifically, this challenge program allocates a large buffer on the heap, and

several objects close to this buffer. When passing a negative number to the program, it

will overflow the buffer on the heap. By exploiting this vulnerability, attackers are able

to overwrite the adjacent objects that have vtable pointers. They then overwrite this

vtable pointer with a pointer to read-only memory, to bypass the deployed defense.

In fact, attackers can overwrite this vtable pointer to reference an offset in an

existing vtable (i.e., a COOP attack). In this way, attackers can invoke a virtual

function out of context. On the other hand, the program contains a virtual function

that writes arbitrary content to the memory pointed by the function argument, allowing

attackers to implement write-what-where primitives. Finally, attackers can overwrite

control data, e.g., function pointers in the Global Offset Table, to hijack the control

flow.

Several teams have solved this challenge, showing that VTable reuse attacks are

feasible. The research paper COOP [23] also shows that VTable reuse attacks are

practical in larger applications, e.g., Internet Explorer and Firefox.

To evaluate our solution’s effectiveness against VTable reuse attacks, we collected

several public exploits for this CTF challenge. Then we get the source code of the

challenge from the author, and recompile the challenge using our tool VTrust. Finally

we modify all these exploits to fit our new environment, and test them against the

hardened challenge program. The result shows that all these exploits are blocked

when the overwritten vtable pointer is used for virtual calls.

6.3 Data Confidentiality and Integrity

To evaluate the efficiency of our implementation prototype, we consider the major

contributors to overhead. The first major source of overhead is coarsely bounds

checking the non-sensitive object set. The second source is enforcing precise bounds

128

on the sensitive set. There are other sources of overhead, such as initializing and

allocating internal data structures, but these happen only once at program start up

and are negligible for long lived programs.

A key feature of DCI is that the programmer decides which objects are in the

sensitive set. This decision should have an effect on the measured overhead, so our

evaluation must account for this decision. This presents a challenge because we cannot

evaluate all possible ways to divide the program data into two non-interacting sets.

Instead, we perform three experiments, that taken together give an overall picture of

DataShield’s overhead.

First, we evaluate microbenchmarks designed to vary the split between sensitive

and non-sensitive data to quantify the ratio’s effect on total measured overhead. We

compare DataShield’s overhead on these microbenchmarks to SoftBound + CETS,

a complete memory safety mechanism, to show the reduced overhead of relaxed

protection for non-sensitive data.

Second, we present three case studies where we assumed the role of the programmer.

We examined the case study source codes and decided what data should be sensitive.

We do not argue that our division of the program data into sensitive/non-sensitive is

correct, optimal, or best in an objective sense. In our case studies, we annotated the

important data types in the programs, leading to most of the data being sensitive.

For our case study programs, we chose libquantum and astar from SPEC CPU2006,

and mbedTLS, a TLS/SSL library.

Third, we evaluate the overhead’s lower bound, i.e. the sensitive set is empty.

This evaluation is an approximation of the case where only a small amount of data

in a program is sensitive and it is accessed very infrequently. We evaluate all SPEC

CPU2006 C/C++ programs in this configuration.

For all our evaluations, our platform was Ubuntu 14.04 LTS with an Intel Core

i7-6600 3.4 GHz processor and 16 GB of RAM. The baseline compiler was clang

3.9 and all programs were compiled with Link Time Optimization (LTO) and O3

optimizations.

129

During our evaluation we discovered that our region-based allocator introduced

performance speed-ups of up to 20% due to a massive reduction in page faults. We

adjusted for this difference by replacing the default allocator with our region-based

allocator when measuring baseline performance. Note that we did not modify the

allocator used by SoftBound + CETS.

6.3.1 Microbenchmarks

To quantify the relationship between proportion of sensitive data and overhead,

we created two microbenchmarks. In the benchmarks, we create a sensitive and

a non-sensitive array, and the size of arrays are varied to control the sensitive to

non-sensitive data ratio. We used the software masking implementation of coarse

bounds checking for comparison against SoftBound + CETS, because the publicly

available implementation uses software bounds checking.

In the first microbenchmark, insertion-sort, we sort arrays using insertion sort.

This exaggerates the effect of the difference in array sizes because insertion sort’s

complexity is quadratic. For example, if the non-sensitive array has size N and the

sensitive array has size 2N , then we will execute four times as many sensitive pointer

dereferences as non-sensitive.

The second microbenchmark is find-max, a simple implementation of a linear scan

of an array of objects to find the element with the largest value for a particular integer

field. We control the ratio of sensitive to non-sensitive objects by varying the sizes of

the two arrays. For example, if the sensitive array has twice as many elements as the

non-sensitive array, we know that there should be roughly twice as many sensitive

pointer dereferences as non-sensitive – because the find-max algorithm is linear in

the size of the array.

The results of this experiment are shown in Figure 6.3. The overhead of SoftBound

+ CETS is mostly constant across our experiments, as we would expect. However, as

the amount of sensitive data increases, the overhead of DataShield increases towards the

130

0.1 0.3 0.5 0.7 0.9
sensitive data ratio

0

50

100

150

200

p
e
rc

e
n
t

o
v
e
rh

e
a
d

insertion sort

DataShield

SoftBound

SoftBound+CETS

0.1 0.3 0.5 0.7 0.9
sensitive data ratio

10

0

10

20

30

40

50

60
find max

Figure 6.3. Performance overhead measured on two microbenchmarks when varying
the proportion of sensitive to non-sensitive data. More sensitive data leads to higher
overhead for DataShield but not for SoftBound + CETS.

SoftBound + CETS overhead. In Figure 6.3, SoftBound + CETS includes both spatial

and temporal protection, but SoftBound is spatial protection only. All configurations

of DataShield, even protecting up to 90% of the data, are faster than SoftBound.

Beyond the overhead savings of enforcing memory safety on only a subset of the data,

we attribute the additional performance improvements compared to SoftBound to,

in part, local optimizations that reduce the number of times bounds are loaded and

inlined versions of the checks. We also observed that the region-base allocators can

have a large effect on heap locality.

From these experiments, we conclude that non-sensitive data does in fact incur

lower overhead using our prototype versus sensitive data. Therefore, the total program

overhead is a function of the amount of sensitive data in the program.

131

6.3.2 Case Study: libquantum

For our first case study, we evaluated libquantum from the SPEC CPU2006

benchmark suite with a subset of the program’s data protected. We decided to protect

the quantum reg struct type as it is one of the main types used by libquantum. To

protect this type, we simply added our annotation to the header file that defines the

type, i.e., “qureg.h.” With precise bounds checking enabled for quantum reg struct

and its sub-objects, we measured an overhead of 27.21% on the ref SPEC benchmark

inputs. Unfortunately, we cannot compare our overhead to SoftBound as the current

SoftBound version does not compile libquantum.

The purpose of the case study is not only to measure the performance overhead,

but also to evaluate the difficulty of annotation. For this case study, adding just one

annotation for quantum reg struct protected nearly every pointer in the program

sensitive because that data type is used so commonly. We created a dynamic profiler

to measure how many dereferenced pointers were sensitive versus non-sensitive. We

measured only two non-sensitive pointer dereferences in this configuration. Note that

benchmarks are geared towards a single purpose with all data heavily connected. This

behavior is therefore expected.

6.3.3 Case Study: mbed TLS

For our second case study, we applied DataShield to

mbedTLS, a SSL/TLS library implemented in about 30, 000 lines of C code1. There

are two main purposes for this case study:

• To show that the type-based annotation approach is scalable to large programs;

• To measure the overhead a system would incur when using a protected SSL/TLS

library in practice.

1The name of the library was changed from PolarSSL to mbedTLS when it was acquired by ARM in
2015.

132

We annotated the type ssl context, which is the most important type used by

the library users. Most functions that are visible to clients take a ssl context as a

parameter. The context has fields of many different types: primitives, pointers, arrays,

and function pointers. We recompiled the mbedTLS library with the context type

annotated and built the included programs ssl client2 and ssl server2 against

our protected library.

With only the type ssl context annotated, we successfully protect all cryptogra-

phy related memory objects in the client and server. In an example run of the sever,

52 non-sensitive pointers were dereferenced compared to over 1.6 million sensitive

pointer dereferences. Note that in a production web server, it would have many more

non-cryptographic functionalities, so in the other areas of the code there would be

more non-sensitive pointer dereferences – which incur lower overhead.

Despite having a high percentage of sensitive objects, we measured the fairly low

overhead of 35.7% when exchanging one million messages between ssl client2 and

ssl server2. This is partly due to not incurring instrumentation overhead when

performing and waiting for IO, as the client and server communicate with each other

over a socket. In practice the SSL/TLS client and server would be running on different

machines connected across some network, so the time waiting for IO might be even

greater.

In conducting this case study we found the type annotations to be straightforward

to use, but we encountered a difficulty with function pointers with sensitive arguments.

When the pointed-to function takes an explicitly sensitive type as a parameter there

is no problem, and the analysis rewrites the pointed-to function correctly. However,

if the caller function invokes a callee function through a pointer with an implicitly

sensitive argument, the analysis can fail to match the callee and caller correctly

and consider the argument as non-sensitive inside the callee. This situation always

leads to a false positive policy violation in the callee, which luckily cannot lead to a

security vulnerability but aborts the program. To address this problem, we added an

annotation that marks the sensitivity of function pointer call sites and address-taken

133

functions. We annotated 50 address-taken functions total for both the ssl client2

and ssl server2. Most function pointer invocations do not need annotations, because

the analysis usually determines sensitivity correctly if the caller uses the pointer at all

– versus allocating a new object, not accessing it, and passing a pointer to the object

to the callee.

6.3.4 Case Study: astar

For our third case study, we use astar, which is a SPEC CPU2006 benchmark. It

is a path finding library implemented in 4,285 lines of C++. In this case study, we

evaluated the effect of relaxing one of the policy rules on the number of bounds checks

and performance. Specifically, we removed rule 1 from Section 5.5.2 for primitive

types only. This relaxation allows sensitive primitive values (int, float, etc.) to

leak information when they are added or subtracted with non-sensitive primitives,

but leaves full protection in place for pointers. We refer to this related policy as

“separation mode.” We annotated the type statinfot and used the “rivers.cfg” input

configuration.

With the full DCI policy enforced the measured overhead was 96%. In separation

mode, the overhead was reduced to 9.12% and the number of sensitive bounds checks

was reduced by from over 100 billion to 160 thousand. Our results show that the full

policy is quite strict and results in a large portion of the program data being sensitive.

However, if we relax the policy, as in separation mode, we can further control the

security versus overhead trade-off.

6.3.5 SPEC CPU2006 Evaluation

To further evaluate the overhead of DataShield, we recompiled each of the SPEC

CPU2006 C/C++ benchmarks with our instrumentation. The SPEC benchmarks are

not ideal candidates for benchmarking security mechanisms like DataShield. Unlike

browsers, web servers, and cryptographic libraries, the SPEC benchmarks are simple

134

p
er

lb
en

ch
b
zi

p
2

g
cc

m
cf

g
ob

m
k

h
m

m
er

sj
en

g
lib

q
u
an

tu
m

h
2
6
4
re

f
om

n
et

p
p

as
ta

r
xa

la
n
cb

m
k

m
ilc

n
am

d
d
ea

lII
so

p
le

x
p
ov

ra
y

lb
m

sp
h
in

x3
G

eo
M

ea
n

5

0

5

10

15

20

25

o
v
e
rh

e
a
d
 (

%
)

mask

mpx

prefix

Figure 6.4. Performance overhead on SPEC CPU2006 for three non-sensitive protection
options: masking, Intel MPX, and address override prefix.

programs with few types and none of the benchmarks deal with sensitive data. We

include them since they are the de-facto standard for performance measurement.

We did not annotate these benchmarks for this experiment. Even though this

experiment is run with an empty sensitive set, the bounds of the non-sensitive region

are still enforced. This experiment is effectively measuring the overhead of the parts

of a program that do not interact with sensitive data, independent of what sensitive

data may exist in the program.

With SPEC CPU2006, we evaluated the three coarse-bounds check options, software

mask, Intel MPX, and address override prefix. Moreover, to isolate the components of

DataShield’s non-sensitive overhead, we measured the overhead of software masking

in integrity-only and confidentiality-only modes.

Comparison of Coarse Bounds Check Implementations. Depending on the

target processor, the programmer may choose among three coarse bounds check

135

implementations, namely software mask, Intel MPX, and address override prefix.

Figure 6.4 shows the overhead of the three options on the SPEC CPU2006 C/C++

benchmarks, using the median of ten runs of each individual benchmark.

For the software mask coarse bounds check, the geometric mean across the bench-

marks was 8.14%, and the difference between individual benchmarks is quite large

(1.82% to 16.34%). The width of this range is due to some benchmarks having many

pointer operations while others having much fewer. For MPX bounds checks and

address override prefix the geometric means are 5.56% and 0.0013% respectively.

As expected, the address override prefix implementation had the lowest overhead –

too small to measure reliably. The main reason for this is that the address override

prefix bounds check does not introduce any additional instructions to the program, it

just prefixes existing instructions. The main drawbacks are that this feature is unique

to the x86-64 instruction set, and that the prefix applies to a fixed region (0− 232).

To summarize, using a prefix offers best performance but constrains the location,

maximum size of the region, and the ISA. Intel MPX has lower overhead than masking

and can give fine-grained control over the location and the size of the region. Masking

has the widest compatibility but is the slowest option.

Integrity and Confidentiality Overhead. We have evaluated the execution

time overhead of DataShield in three different configurations: (i) integrity-only, (ii)

confidentiality-only, and (iii) both confidentiality and integrity. These different config-

urations protect the confidentiality, integrity, or both of the sensitive region.

In integrity-only mode, only stores to pointed to memory locations are protected. In

confidentiality-only mode, only loads from pointed to memory locations are protected.

In the third mode, all loads and stores are protected.

Integrity-only is clearly useful on its own. Many mechanisms enforce only integrity

including CFI, CPI, and WIT [33, 118, 132]. Conversely, confidentiality without

integrity is brittle because the attacker can simply overwrite the metadata. We present

the overhead of confidentiality-only mode to show the different components of the

136

p
er

lb
en

ch
b
zi

p
2

g
cc

m
cf

g
ob

m
k

h
m

m
er

sj
en

g
lib

q
u
an

tu
m

h
2
6
4
re

f
om

n
et

p
p

as
ta

r
xa

la
n
cb

m
k

m
ilc

n
am

d
d
ea

lII
so

p
le

x
p
ov

ra
y

lb
m

sp
h
in

x3
G

eo
M

ea
n

10

5

0

5

10

15

20

o
v
e
rh

e
a
d
 (

%
)

integ.

conf.

both

Figure 6.5. Performance overhead on SPEC CPU2006 isolated by protection type.
Integrity-only protects writes, confidentiality-only protects reads, and “both” protects
reads and writes.

overhead and for comparison to integrity-only mechanisms. Of course, the enforcement

of both integrity and confidentiality is the strongest protection and incurs the highest

overhead.

Figure 6.5 measures the overheads for the different modes on different runs, so

integrity-only and confidentiality-only options do not sum up exactly to the combined

integrity and confidentiality option due to measurement variation. One interesting

aspect of this result is that confidentiality is more costly than integrity, as there are

more memory reads than writes in the SPEC CPU2006 benchmarks.

6.3.6 Security Evaluation

To evaluate the security of our approach, we looked for Common Vulnerabilities

and Exposures (CVEs) in our case study programs. Guido Vranken discovered a

137

remote heap corruption vulnerability for mbedTLS in October 2015 [144] (CVE-

2015-5291). The root cause of the vulnerability is a buffer overflow. Specifically,

a malicious SSL/TLS server can create a session ticket that overflows the client’s

buffer when the session ticket is reused by the client, corrupting the client’s heap. We

recompiled mbedTLS 2.1.1 (an older version, before the vulnerability was patched)

both with and without protection, and ran the malicious server against our clients.

As expected, without DataShield protection the client’s heap was corrupted, but with

protection the attack caused a bounds violation and termination of the program. From

this evaluation, we conclude that DCI is a useful defense mechanism for mitigating

vulnerabilities in production software.

Qualitatively, DataShield provides deterministic protection for every sensitive

variable in the sensitive set because there is a check on every pointer deference.

6.4 Summary

In this chapter we have evaluated the performance and security of our mechanisms.

We showed that the performance overhead of VTrust is very low (less than 6%) and

the performance overhead of DataShield is reduced relative to complete memory safety.

Both mechanisms are able to detect exploits of recent CVEs found in production

software.

138

7 DISCUSSION

In this section, we discuss our results, potential new directions for research, and

unsolved challenges related to our work.

7.1 Benchmarking Control-Flow Integrity Mechanisms

As Table 3.2 shows, authors working in the area of CFI agree to evaluate their

mechanisms using the SPEC CPU2006 benchmarks. There is, however, less agreement

on whether to include both the integer and floating point subsets. The authors of

Lockdown report the most complete set of benchmark results covering both integer

and floating point benchmarks and the authors of bin-CFI, πCFI, and MCFI include

most of the integer benchmarks and a subset of the floating point ones. The authors

of VTV and IFCC only report subsets of integer and floating point benchmarks

where their solutions introduce non-negligible overheads. Except for CFI mechanisms

focused on a particular type of control flows such as virtual method calls, authors

should strive to report overheads on the full suite of SPEC CPU2006 benchmarks. In

case there is insufficient time to evaluate a CFI mechanism on all benchmarks, we

strongly encourage authors to focus on the ones that are challenging to protect with

low overheads, i.e., the benchmarks which make many indirect calls. These include

perlbench, gcc, gobmk, sjeng, omnetpp, povray, and xalancbmk. Additionally, it is

desirable to supplement SPEC CPU2006 measurements with measurements for large,

frequently targeted applications such as web browsers and web servers.

Although “traditional” CFI mechanisms (e.g., those that check indirect branch

targets using a pre-computed CFG) can be implemented most efficiently in a compiler,

this does not automatically make such solutions superior to binary-level CFI mecha-

nisms. The advantages of the latter type of approaches include, most prominently, the

139

ability to work directly on stripped binaries when the corresponding source is unavail-

able. This allows CFI enforcement to be applied independently of the code producer

and therefore puts the performance/security trade off in the hands of the end-users

or system administrators. Moreover, binary-level solutions naturally operate on the

level of entire program modules irrespective of the source language, compiler, and

compilation mode that was used to generate the code. Implementers of compiler-based

CFI solutions on the other hand must spend additional effort to support separate

compilation or require LTO operation which, in some instances, lowers the usability

of the CFI mechanism [56].

7.2 Cross-cutting Concerns for Control-Flow Integrity

This section discusses CFI enforcement mechanisms, presents calls to action

identified by our study for the CFI community, and identifies current frontiers in CFI

research.

7.2.1 Enforcement Mechanisms

The CFI precursor Program Shepherding [58] was built on top of a dynamic opti-

mization engine, RIO. For CFI like security policies, Program Shepherding effects the

way RIO links basic blocks together on indirect calls. They improve the performance

overhead of this approach by maintaining traces, or sequences of basic blocks, in which

they only have to check that the indirect branch target is the same.

Many CFI papers follow the ID based scheme presented by Abadi et. al [33]. This

scheme assigns a label to each indirect control flow transfer, and to each potential

target in the program. Before the transfer, they insert instrumentation to insure that

the label of the control flow transfer matches the label of the destination.

Recent work from Google [46, 129] and Microsoft [100] has moved beyond the

ID based schemes to optimized set checks. These rely on aligning metadata such

140

that pointer transformations can be performed quickly before indirect jumps. These

transformations guarantee that the indirect jump target is valid.

Hardware-Supported Enforcement Modern processors offer several hardware

security-oriented features. Data Execution Prevention is a classical example of how

a simple hardware feature can eliminate an entire class of attacks. Many processors

also support AES encryption, random number generation, secure enclaves, and array

bounds checking via instruction set extensions.

Researchers have explored architectural support for CFI enforcement [93,104,145,

146] with the goal of lowering performance overheads. A particular advantage of these

solutions is that backward edges can be protected by a fully-isolated shadow stack

with an average overhead of just 2% for protection of forward and backward edges.

This stands in contrast to the average overheads for software-based shadow stacks

which range from 3 to 14% according to [110].

There have also been efforts to repurpose existing hardware mechanisms to imple-

ment CFI [88,90,98,99]. kBouncer [88] was the first to demonstrate a CFI mechanism

using the 16-entry LBR branch trace facility of Intel x86 processors. The key idea in

their kBouncer solution is to check the control flow path that led up to a potentially

dangerous system call by inspecting the LBR; a heuristic was used to distinguish exe-

cution traces induced by ROP chains from legitimate execution traces. ROPecker [90]

subsequently extended LBR-based CFI enforcement to also emulate what code would

execute past the system call. While these approaches offer negligible overheads and do

not require recompilation of existing code, subsequent research showed that carefully

crafted ROP attacks can bypass both of these mechanisms [60–62]. The CFIGuard

mechanism [99] uses the LBR feature in conjunction with hardware performance

counters to heuristically detect ROP attacks. CFIMon [114] used the branch trace

store, which records control-flow transfers to a buffer in memory, rather than the LBR

for CFI enforcement. C-CFI [95] uses the Intel AES-NI instruction set to compute

cryptographically-enforced hash-based message authentication codes, HMACs, for

pointers stored in attacker-observable memory. By verifying HMACs before pointers

141

are used, C-CFI prevents control-flow hijacking. O-CFI [94] leverages Intel’s MPX

instruction set extension by re-casting the problem of CFI enforcement as a bounds

checking problem over a randomized CFG.

Most recently, Intel announced hardware support for CFI in future x86 processors.

Intel Control-flow Enforcement Technology (CET) [147] adds two new instructions,

ENDBR32 and ENDBR64, for forward edge protection. Under CET, the target of

any indirect jump or indirect call must be a ENDBR instruction. This provides

coarse-grained protection where any of the possible indirect targets are allowed at

every indirect control-flow transfer. There is only one equivalence class which contains

every ENDBR instruction in the program. For backward edges, CET provides a new

Shadow Stack Pointer (SSP) register which is exclusively manipulated by new shadow

stack instructions. Memory used by the shadow stack resides in virtual memory and

is protected with page permissions. In summary, CET provides precise backward edge

protection using a shadow stack, but forward edge protection is imprecise because

there is only one possible label for destinations.

7.2.2 Open Problems

As seen in Section 3.4.1 most existing CFI implementations use ad hoc, imprecise

analysis techniques when constructing their CFG. This unnecessarily weakens these

mechanisms, as seen in Section 3.4.2. All future work in CFI should use flow-sensitive

and context-sensitive analysis for forward edges, SAP.F.5 from Section 3.2.4. On

backward edges, we recommend shadow stacks as they have negligible overhead and

are more precise than any possible static analysis. In this same vein, a study of

real world applications that identifies coding practices that lead to large equivalence

classes would be immensely helpful. This could lead to coding best practices that

dramatically increase the security provided by CFI.

Quantifying the incremental security provided by CFI, or any other security

mechanism, is an open problem. However, a large adversarial analysis study would

142

provide additional insight into the security provided by CFI. Further, it is likely that

CFI could be adapted as a result of such a study to make attacks more difficult.

7.2.3 Research Frontiers

Recent trends in CFI research target improving CFI in directions beyond new

analysis or enforcement algorithms. Some approaches have sought to increase CFI

protection coverage to include just-in-time code and operating system kernels. Others

leverage advances in hardware to improve performance or enable new enforcement

strategies. We discuss these research directions in the CFI landscape which cross-cut

the traditional categories of performance and security.

Protecting Operating System Kernels. In monolithic kernels, all kernel

software is running at the same privilege levels and any memory corruption can be

fatal for security. A kernel is vastly different from a user-space application as it is

directly exposed to the underlying hardware and an attacker in that space has access

to privileged instructions that may change interrupts, page table structures, page table

permissions, or privileged data structures. KCoFI [44] introduces a first CFI policy

for commodity operating systems and considers these specific problems. The CFI

mechanism is fairly coarse-grained: any indirect function call may target any valid

functions and returns may target any call site (instead of executable bytes). Xinyang

Ge et al. [102] introduce a precise CFI policy inference mechanism by leveraging

common function pointer usage patterns in kernel code (SAP.F.4b on the forward

edge and SAP.B.1 on the backward edge).

Protecting Just-in-time Compiled Code. Like other defenses, it is important

that CFI is deployed comprehensively since adversaries only have to find a single

unprotected indirect branch to compromise the entire process. Some applications

contain just-in-time, JIT, compilers that dynamically emit machine code for managed

languages such as Java and JavaScript. [32] presented RockJIT, a CFI mechanism

that specifically targets the additional attack surface exposed by JIT compilers.

143

RockJIT faces two challenges unique to dynamically-generated code: (i) the code

heap used by JIT compilers is usually simultaneously writable and executable to

allow important optimizations such as inline caching [137] and on-stack replacement,

(ii) computing the control-flow graphs for dynamic languages during execution without

imposing substantial performance overheads. RockJIT solves the first challenge by

replacing the original heap with a shadow code heap which is readable and writable

but not executable and by introducing a sandboxed code heap which is readable and

executable, but not writable. To avoid increased memory consumption, RockJIT

maps the sandboxed code heap and the shadow heap to the same physical memory

pages with different permissions. RockJIT addresses the second challenge by both

(i) modifying the JIT compiler to emit meta-data about indirect branches in the

generated code and (ii) enforcing a coarse-grained CFI policy on JITed code which

avoids the need for static analysis. The authors argue that a less precise CFI policy for

JITed code is acceptable as long as both (i) the host application is protected by a more

precise policy and (ii) JIT-compiled code prevents adversaries from making system

calls. In the Edge browser, Microsoft has updated the JIT compilers for JavaScript

and Flash to instrument generated calls and to inform CFGuard of new control-flow

targets through calls to SetProcessValidCallTargets [148–150].

Protecting Interpreters. Control-flow integrity for interpreters faces similar

challenges as just-in-time compilers. Interpreters are widely deployed, e.g., two major

web browsers, Internet Explorer and Safari, rely on mixed-mode execution models

that interpret code until it becomes “hot” enough for just-in-time compilation [151],

and some Desktop software, too, is interpreted, e.g., Dropbox’s client is implemented

in Python. We have already described the “worst-case” interpreters pose to CFI from

a security perspective: even if the interpreter’s code is protected by CFI, its actual

functionality is determined by a program in data memory. This separation has two

important implications: (i) static analysis for an interpreter dispatch routine will

result in an over-approximation, and (ii) it enables non-control data attacks through

manipulating program source code in writeable data memory prior to JIT compilation.

144

Interpreters are inherently dynamic, which on the one hand means, CFI for

interpreters could rely on precise dynamic points-to information, but on the other

hand also indicates problems to build a complete control-flow graph for such programs.

Dynamically executing strings as code (eval) further complicates this. Any CFI

mechanism for interpreters needs to address this challenge.

Protecting Method Dispatch in Object-Oriented Languages. In C/C++

method calls use vtables, which contain addresses to methods, to dynamically bind

methods according to the dynamic type of an object. This mechanism is, however, not

the only possible way to implement dynamic binding. Predating C++, for example, is

Smalltalk-style method dispatch, which influenced the method dispatch mechanisms

in other languages, such as Objective-C and JavaScript. In Smalltalk, all method

calls are resolved using a dedicated function called send. This send function takes

two parameters: (i) the object (also called the receiver of the method call), and (ii)

the method name. Using these parameters, the send method determines, at call-time,

which method to actually invoke. In general, the determination of which methods

are eligible call targets, and which methods cannot be invoked for certain objects

and classes cannot be computed statically. Moreover, since objects and classes are

both data, manipulation of data to hijack control-flow suffices to influence the method

dispatch for malicious intent. While Pewny and Holz [89] propose a mechanism for

Objective-C send-like dispatch, the generalisation to Smalltalk-style dispatch remains

unsolved.

7.3 Data Confidentiality and Integrity Future Work

Automatically identifying sensitive data is an open problem we plan to investigate

in future work. Additionally, we plan to enhance our implementation, DataShield, by

improving the precision of the sensitivity analysis.

145

7.3.1 Automatically Identifying Sensitive Data

The main unsolved problem for targeted non-control-data attack mechanisms is

identifying sensitive data in a generic way. Other approaches have targeted a specific

piece of software and the authors use their domain knowledge to determine what is

sensitive. An example of this is Kenali [152] which protects security checks inside

the Linux Kernel. The approach is semi-automated in that all variables which have

data-flow with the security check’s return codes are found automatically. However, the

authors manually determined that the return codes are the roots of the sensitive data-

flows and this approach is not immediately generalizable to software other than the

Linux Kernel. However, we believe generalizing Kenali’s approach to track data-flow

with variables upon which control-flow depends is an promising direction.

The challenge for automatically identifying sensitive data is that there is no

information in C/C++ code that can be reliably found automatically that determines

if a given variable is security critical.

7.3.2 Sensitivity Analysis

In future work, we plan to formalize and improve our sensitivity analysis. As

discussed in Section 5.6.2 we over-approximate the sensitive set. This leads to

higher overhead because the security checks on sensitive pointers are more expensive.

Therefore, a more precise analysis would result in lower overhead.

Despite not presenting a complete formal proof, we do have some evidence for

correctness. If a program runs successfully with instrumentation (which is the case in

all our experiments) then we know that every check succeeded. Therefore, the static

determination of sensitivity matched the true sensitivity of the pointer at runtime

every time a pointer was dereferenced during program execution. This argument,

however, does not provide conclusions about the correctness of non-exercised code

paths.

146

We also plan to investigate using Intel MPX to enforce the bounds for both sensitive

and non-sensitive pointers at runtime. We would need to modify our metadata data

structure to allow Intel MPX’s bounds look up instructions to access it.

7.4 Summary

In this section, we have discussed our results, limitations of our defenses, and

future research directions. Based on our results, we show that the CFI community

would benefit from greater benchmarking standardization. For our own work on DCI,

we foresee the method for automatically identifying the smallest set of sensitive data

as the next research problem.

147

8 RELATED WORK

The related worked for this dissertation broadly falls into three categories, (i) memory

safety, (ii) control-flow integrity, and (iii) non-control-data attacks. Memory safety

and control-flow integrity are well researched areas with many attacks and defenses. In

fact, CFI attackers and defenders are in an arms race. Defenders propose a mechanism,

attackers bypass it, and then the defenders propose a new defense against that attack,

and the cycle repeats.

8.1 Memory Safety

Control-flow hijacking attacks (including VTable hijacking attacks) utilize memory

safety bugs to modify the program state by tampering with code pointers (e.g., return

addresses and function pointers), causing the control-flow to divert when the broken

code pointers are used.

Effective defense mechanisms against these attacks can be classified on when they

stop an attack [56]: (i) at the memory safety level by, e.g., checking bounds of memory

access [9,153–155] or enforcing temporal safety on memory [10], (ii) when code-pointers

are written (i.e., protecting a subset of data) [118], or (iii) when corrupted data is

used in a computation like for Control-Flow Integrity (CFI) [33–46].

Memory safety-based defenses result in fairly high overhead as many memory read

and write operations must be protected with additional guards. Some tools reduce

the overhead by restricting protection to write operations only [132]. Code-Pointer

Integrity [118] restricts the protection in another dimension by protecting a subset of

all pointers: code pointers and any data structure that references code pointers.

There are many proposed techniques that aim to add memory safety to C or a C

dialect. Approaches that augment the C language include CCured [5] and Cyclone [4].

148

Both approaches are compiler-based and combine static analysis with runtime checks.

DataShield is inspired by CCured and Cyclone in that it tries to make the porting

process as easy as possible. There is a massive amount of legacy C code for which

porting to a new language is too costly.

SoftBound [9] provides complete spatial memory safety but works on unmodified C

code. CETS [10] is an extension to SoftBound that provides temporal safety. The main

drawback of SoftBound + CETS, and complete memory safety in general, is overhead.

Code-Pointer Integrity (CPI) [118] is a specialization of memory safety that only

protects code pointers. This ensures control-flow integrity while reducing overhead

relative to complete memory protection. DCI extends CPI’s partial protection to

other types of data. Key differences between CPI and DCI are:

1. CPI protects code pointers only (e.g., function pointers, return addresses, or

indirect jumps) while DCI protects any type of data, not just pointer data;

2. DCI allows the programmer to specify what is protected whereas CPI exclusively

focuses on code pointers;

3. DCI protects the content of objects along with pointer values whereas CPI

protects pointer values only;

4. DCI enforces both integrity and confidentiality where CPI only enforces integrity.

Several approaches attempt to reduce the memory overhead of complete mem-

ory safety [16]. Hardware support [156–158] has been shown to reduce overhead.

ASAP [159] is a tool that allows the programmer to specify the amount of overhead

she is willing to accept then only inserts checks up to that budget. DCI also aims

to reduce the performance overhead but never relaxes the policy on sensitive data.

SAFECode [160] used static analysis to eliminate checks and its allocation pools are

similar to DCI if we consider the sensitivity to be part of a variable’s type. METAlloc

reduces the cost of metadata look up [161]. PAricheck [162] reduces the cost of pointer

arithmetic checks by labeling memory objects and checking if the result points to

149

an object with the same label. Similar approaches that are memory allocator based

include Cling, DieHard(er), and Baggy Bounds Checking [49–51,136].

8.2 Control-Flow Integrity

CFI protects against control-flow hijacking attacks by adding guards before indirect

control-flow transfers, which restricts each indirect control-flow transfer to the set of

valid targets as determined by a static analysis (usually a type-based points-to analysis).

CFI can stop attacks such as return-to-libc [163] and ROP [66]. HyperSafe [35] enforces

a fine-grained CFI policy for virtual machine managers. Recent approaches [39,41]

directly rewrite binaries and provide a coarse-grained CFI protection.

However, CFI faced several adoption hurdles: the fine-grained CFI solutions usually

do not support separate compilation, few of them provide precision protection for C++

programs, and many of them induce fairly high overhead. Relaxed implementations

can be circumvented [60–62]. Our solution VTrust provides a fine-grained CFI for only

virtual calls. It does not rely on a whole-program analysis and provides modularity

support.

In Chapter 3, we systematically compare the existing work in CFI in depth.

8.2.1 VTable Hijacking Defense

Researchers also proposed some specific virtual call protection solutions. Table 8.1

shows a brief comparison between these solutions and our solution VTrust, including

the effectiveness of each defense, the support of incremental building (i.e., modular-

ity support), dynamic loading of external libraries (i.e., mixed code) and dynamic

generated code (i.e., writable code), as well as the performance of compile-time class

hierarchy analysis and runtime overhead.

150

T
ab

le
8.

1.
C

om
p
ar

is
on

b
et

w
ee

n
d
ef

en
se

s
ag

ai
n
st

V
T

ab
le

h
ij

ac
k
in

g
at

ta
ck

s,
in

cl
u
d
in

g
w

h
et

h
er

th
ey

ca
n

(1
)

d
ef

ea
t

V
T

ab
le

h
ij

ac
k
in

g,
an

d
su

p
p

or
t

(2
)

in
cr

em
en

ta
l

b
u
il
d
in

g
(i

.e
.,

m
o
d
u
la

ri
ty

),
(3

)
ex

te
rn

al
li
b
ra

ri
es

,
an

d
(4

)
w

ri
ta

b
le

co
d
e

(i
.e

.,
d
y
n
am

ic
ge

n
er

at
ed

co
d
e)

.
T

h
is

ta
b
le

al
so

sh
ow

s
th

e
co

m
p
ar

is
on

of
(5

)
sp

ee
d

of
cl

as
s

h
ie

ra
rc

h
y

an
al

y
si

s,
(6

)
so

u
rc

e
co

d
e

d
ep

en
d
en

cy
,

an
d

(7
)

p
er

fo
rm

an
ce

ov
er

h
ea

d
.

T
h
e

ab
b
re

v
ia

ti
on

S
D

st
an

d
s

fo
r

S
af

eD
is

p
at

ch
.

In
th

e
d
y
n
a
m
i
c

l
o
a
d
i
n
g

co
lu

m
n
,
Y
/
N

m
ea

n
s

th
e

d
ef

en
se

su
p
p

or
ts

lo
ad

in
g

h
ar

d
en

ed
or

an
al

y
ze

d
li
b
ra

ri
es

,
b
u
t

n
ot

u
n
h
ar

d
en

ed
on

es
.

D
ef

en
se

A
b

le
to

D
ef

en
d

?
In

cr
em

en
ta

l
E

x
te

rn
a
l

W
ri

ta
b

le
C

la
ss

H
ie

ra
rc

h
y

S
o
u
rc

e
C

o
d

e
P

er
fo

rm
a
n
ce

S
ol

u
ti

on
V

T
ab

le
in

je
ct

io
n

V
T

a
b
le

re
u

se
B

u
il

d
in

g
L

ib
ra

ri
es

C
o
d

e
A

n
a
ly

si
s

S
p

ee
d

D
ep

en
d

en
cy

O
ve

rh
ea

d

V
T

in
t

[9
7]

y
p

a
rt

ia
l

N
/
A

y
y

N
/
A

N
2
%

T
-V

IP
[1

27
]

y
N

N
/
A

y
y

N
/
A

N
2
.2

%
v
fG

u
ar

d
[9

6]
y

p
a
rt

ia
l

N
/
A

Y
/
N

y
N

/
A

N
1
8
.3

%
or

ig
in

al
C

F
I

[3
3]

p
ar

ti
al

p
a
rt

ia
l

N
/
A

Y
/
N

N
N

/
A

N
1
6
%

V
T

G
u

ar
d

[1
64

]
N

y
y

Y
/
N

N
N

/
A

y
<

0
.5

%
S

D
-v

ta
b

le
[9

1]
y

y
N

Y
/
N

y
sl

ow
y

3
0
%

S
D

-m
et

h
o
d

[9
1]

y
y

N
Y

/
N

y
sl

ow
y

7
%

R
o
ck

J
IT

[3
2]

y
y

y
Y

/
N

y
sl

ow
y

1
0
.8

%
V

T
V

[4
6]

y
y

y
Y

/
N

y
fa

ir
y

a
b

o
u

t
3
%

V
T

ru
st

y
y

y
Y

/
N

y
fa

st
y

0
.7

2
%

o
r

2
.2

%

151

The VTint [97], T-VIP [127] solutions are binary-rewriting based defense mecha-

nisms. VTint places vtables in a special read-only section and adds instrumentation

before virtual calls to check if the runtime target vtable is in this read-only section.

It can defeat all VTable injection attacks, but only a few VTable reuse attacks (i.e.,

reusing existing data rather than vtables). Attackers may reuse existing vtables to

launch attacks [23] to bypass it. T-VIP works in a similar way, but does not provide

any protection against VTable reuse attacks. They both introduce a low performance

overhead, and are able to protect applications with writable code.

VfGuard [96] is another binary level defense. It filters virtual functions at runtime

based on some features, e.g., the index of the function inside a vtable. It uses dynamic

instrumentation tool PIN [165] to validate these filters, and thus has a high performance

overhead. Since the filters used by vfGuard are permissive, it only provides a partial

protection against VTable reuse attacks. Moreover, all these three binary solutions

rely on some heuristics to identify vtable related operations in programs, and may

also cause false negatives in some cases, i.e., some virtual calls are not protected.

The original CFI [33] also provides some protection against VTable hijacking.

However, it cannot defeat all VTable hijacking attacks, because it does not utilize the

type information of virtual functions. Moreover, it does not support writable code

and incurs a higher performance overhead.

VTGuard [164] is a lightweight source code level defense, similar to stack canaries,

that instruments secret cookies at the end of legitimate vtables. Its performance

overhead is extremely low. However, it is vulnerable to information leakage attacks.

Attackers may leak the secret cookies and inject fake vtables with correct cookies. So,

it cannot defeat VTable injection attacks, nor protect applications with writable code.

SafeDispatch [91], RockJIT [32] and VTV [46] work on programs’ source code too.

SafeDispatch resolves the set of legitimate vtables (or virtual functions) for each virtual

function call by performing a class hierarchy analysis (CHA) at compile-time, and

validates the runtime vtable (or virtual function) against this set. It requires a heavy

compile-time class hierarchy analysis, which prevents the incremental compilation. It

152

uses a set lookup operation that is slow to perform the security check, introducing a

high performance overhead.

RockJIT is based on a fine-grained signature-based CFI solution MCFI [45] that

only protects C code, and extends it to Just-in-Time compiled code and virtual calls.

RockJIT also performs a CHA analysis like SafeDispatch, and introduces a very high

performance overhead as well. Unlike SafeDispatch, it supports separate compilation

by emitting the class hierarchy information into each module and combining them at

link time. However, it also has to rebuild the whole program, when the class hierarchy

changes. VTrust only uses signature matching (i.e., type enforcement) to protect

virtual calls, without the requirement of class hierarchy information, which provides a

better compatibility and performance.

Tice et al. [46] propose VTV and Indirect Function-Call Checks (IFCC) to protect

indirect call and jump instructions. VTV validates if the target vtable is in a legitimate

set. But it only analyzes parts of the class hierarchy information when compiling, and

utilizes the runtime initializer functions to update the overall class hierarchy. In this

way, it supports incremental building with a faster class hierarchy analysis.

However, it also needs a slow runtime set lookup operation to perform the security

check. The performance overhead not only depends on the count of virtual calls, but

also the size of the legitimate vtable set. In applications with complex class hierarchy,

the performance overhead would be higher. Moreover, it needs to perform an extra

check each time a new vtable set is created, to overcome the split-set problem [46],

causing a high overhead when loading a new library.

VTV’s overhead ranges from 2.4% to 19.2% for SPEC applications, and from 1.6%

to 8.4% for the Chrome browser when testing different benchmarks. Our solution

VTrust introduces an average overhead of 0.72% and 0.31% for SPEC and Firefox

respectively, when only enabling the first layer. Even with the extra second layer

of defense, the average overhead of VTrust is about 2.2%, comparable with VTV.

VTV also introduces a profile guided optimization to perform de-virtualization, i.e.,

153

translating virtual calls to direct calls. This optimization helps improve the overall

performance a lot. It can also be adopted by other defenses, such as VTrust.

Our solution VTrust uses the signature matching to enforce virtual functions’ type

and provide a most fine-grained CFI protection, and an optional extra layer of defense

to validate vtable pointers’ validity in case target applications have writable code

allowing attackers to forge functions with correct signatures. It does not need any

global class hierarchy information, and thus it has a faster static analysis and natural

modularity support. Its performance overhead is also better than most of existing

solutions. Moreover, the overhead of each security check instrumented by VTrust is

constant, irrelevant to the class hierarchy. It is also able to identify corner cases, and

provides a complete protection against VTable hijacking attacks.

All six of these source code level defenses support dynamically loaded libraries.

When a hardened library is dynamically loaded into the process, the runtime class

hierarchy is updated, so the newly loaded virtual functions are allowed to be called.

However, if an unhardened library is loaded into the process, all these solutions may

cause false positives because the class hierarchy is missing the classes from the loaded

library. Usually, a special fallback failure function that tracks a whitelist can be

embedded in the security check to catch such false positives.

8.3 Non-Control-Data Defenses

Yarra [166] is similar in concept to the DCI policy but Yarra focuses on programming

language theory while our work targets a practical implementation. Yarra has two

modes, whole program and targeted. Whole program mode is complete memory

safety with metadata for each memory address. The runtime of gzip from SPEC

INT2000 in whole program mode is 6x the baseline. In targeted mode, Yarra uses page

protection to lock its protected data whenever unprotected functions are executing.

This approach was inspired by Samurai [167] and has great compatibility because

it can guarantee the integrity of the protected data even when running completely

154

unknown and untrusted code. The drawback is that the overhead of updating the

page permission is far higher than our implementation. Yarra’s execution time of gzip

in targeted mode is 2x the baseline.

Kenali [152] enforces the integrity of kernel security checks with a form of data-flow

integrity. It is similar to DCI in that it attempts to infer the sensitive data from a set

of sensitive data root variables. For Kenali, root variables are the error codes returned

by kernel security checks but in DCI the roots can be any data type. The protection

enforcement is stronger in DataShield than in Kenali. Kenali relies on information

hiding to protect its stack and overflows between sensitive objects are not prevented

by Kenali. We believe DCI offers a more flexible approach in that the programmer

can control which data is sensitive and it works on a variety of programs whereas

Kenali targets only the Linux kernel.

Shreds [168] is a new compartmentalization mechanism for protecting sensitive data.

Unlike Shreds which treats all memory inside the shred as sensitive, DCI supports code

that mixes sensitive and non-sensitive data. Shreds provides no protection against

overflows between sensitive objects. If there is a memory error anywhere within the

shred, the attacker can corrupt any memory inside the shred.

The inspiration for DataShield comes from the abundance of work on Control-

Flow Integrity [33,43,45,91,98,103,118]. CFI mechanisms are becoming robust and

practical, but they do not address non-control-data attacks. Chen et al. [24] argued

that non-control-data attacks pose a significant and realistic threat. Recent work

has called into question the security of CFI. Control-flow Bending [62], Control-flow

Jujutsu [107], Counterfeit Object Oriented Programming [23], and Out of Control [60]

showed there are multiple attack vectors to bypass CFI.

8.4 Isolation Mechanisms

DataShield’s protection scheme is somewhat similar to the implementation of

Monitor Integrity Protection (MIP) [42], except DataShield also enforces confidentiality.

155

The monitors in MIP are analogous to the sensitive data in DCI. Other similar isolation

mechanisms include PittSFIeld [52], TRuE [169], and Native Client [170]. Other

mechanisms combine isolation with a policy which forbid or allow certain system

calls [58, 171].

8.5 Summary

Many memory safety mechanisms have been proposed by researchers, but have

not seen wide spread adoption, primarily due to prohibitive overhead. Control-flow

integrity has recently been integrated into production compilers, but is still a very

active area of research. Non-control-data attacks may be the next attack vector after

CFI, and non-control-data research is relatively nascent compared to CFI research.

156

9 CONCLUSION

Systems software, primarily written in C/C++, comprises the majority software modern

computers run. Attackers exploit errors in C/C++ programs to: i) gain control of

systems and ii) leak or corrupt sensitive data. Exploitable errors are prevalent in

C/C++ programs partly due to the design of the programming languages. Memory

and type safety of the program are not required by the language or enforced by the

compiler, but are left solely to the programmer.

This dissertation presents our research on state-of-the-art defenses that protect

critical data in systems software at low overhead. Our systems’ designs are informed

by the strengths and weaknesses in existing defenses and the latest, most sophisticated

attacks. As our Control-Flow Integrity (CFI) survey shows, measuring the strength

of existing protections is difficult. We need strong new tools to proactively defend

emerging attack against sensitive data. VTrust protects vtables in C++, while Data

Confidentiality and Integrity protects arbitrary programmer selected data.

We have evaluated the performance and security of our mechanisms. Both VTrust

and DCI impose low overhead while mitigating vulnerabilities in production software.

These evaluations support our thesis statement in Section 1.4, that we can provide

strong protect to sensitive data in systems software at low overhead

Our contributions are summarized as:

1. Chapter 3 is an exhaustive survey and systematization of the CFI literature

with the first direct comparison of these mechanisms on common platforms and

security evaluation using quantitative and qualitative metric.

2. In Chapter 4 we present VTrust, a new mechanism for protecting virtual func-

tion calls in C++ with lower overhead than state-of-the-art mechanisms and

modularity support.

157

3. In Chapter 5, we present the design of DCI, and its implementation DataShield.

DCI is a novel technique for protecting programmer-selected sensitive data.

Future work for VTrust and our CFI survey are to develop more precise analyses,

more precise than type-based analysis, and to develop a metric or method that

accurately measures the security provided by a CFI mechanism. For DCI, our work

could be expanded by generalizing the method for choosing the subset of data to

protect automatically. This would make our technique applicable to more types of

software and easier to adopt.

Our techniques provide strong protection, as evidenced by detecting CVEs found

in production software, at low over head – 35.7% in our case study of applying DCI

to mbedTLS, and under 6% for VTrust across both SPEC CPU2006 and Firefox.

REFERENCES

158

REFERENCES

[1] Neel Mehta and Codenomicon. The Heartbleed Bug. http://heartbleed.com/.

[2] The Rust Project Developers. The Rust Programming Language.
https://doc.rust-lang.org/stable/book/.

[3] Galen Hunt and Jim Larus. Singularity: Rethinking the software stack. ACM
SIGOPS Operating Systems Review, 2007.

[4] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In USENIX Annual Technical
Conference (ATC), 2002.

[5] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. CCured: Type-safe retrofitting of legacy software. Transactions on
Programming Languages and Systems (TOPLAS), 2005.

[6] ISO/IEC. ISO International Standard ISO/IEC 14882:2014(E). https://
isocpp.org/std/the-standard, 2014.

[7] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
verification of an OS kernel. In Symposium on Operating Systems Principles
(SOSP), 2009.

[8] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim,
Vilhelm Sjöberg, and David Costanzo. CertiKOS: An extensible architecture for
building certified concurrent OS kernels. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2016.

[9] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
Softbound: Highly compatible and complete spatial memory safety for C. In
Conference on Programming Language Design and Implementation (PLDI),
2009.

[10] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
CETS: Compiler enforced temporal safety for C. In International Symposium
on Memory Management (ISMM), 2010.

[11] Fraser Brown, Andres Nötzli, and Dawson Engler. How to build static checking
systems using orders of magnitude less code. In International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2016.

[12] Itanium C++ ABI. http://mentorembedded.github.io/cxx-abi/abi.html.

http://heartbleed.com/
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
http://mentorembedded.github.io/cxx-abi/abi.html

159

[13] Microsoft. Data Execution Prevention (DEP). http://support.microsoft.
com/kb/875352/EN-US/, 2006.

[14] Isaac Evans, Samuel Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany
Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed
Okhravi. Missing the point: On the effectiveness of code pointer integrity. In
IEEE Symposium on Security and Privacy (S&P), 2015.

[15] PaX-Team. PaX ASLR (Address Space Layout Randomization). http://pax.
grsecurity.net/docs/aslr.txt, 2003.

[16] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Everything
you want to know about pointer-based checking. In Summit on Advances in
Programming Languages (SNAPL), 2015.

[17] ISO/IEC. ISO International Standard ISO/IEC 9899:2011. http://webstore.
ansi.org/RecordDetail.aspx?sku=INCITS%2FISO%2FIEC+9899-2012, 2012.

[18] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michale Franz, Stefan
Brunthaler, and Mathias Payer. Control-flow integrity: Protection, security and
performance. ACM Computing Surveys (CSUR), 2018.

[19] Chao Zhang, Scott A. Carr, Tongxin Li, Yu Ding, Chengyu Song, Mathias Payer,
and Dawn Song. VTrust: Regaining trust on virtual calls. In Symposium on
Network and Distributed System Security (NDSS), 2016.

[20] Scott A. Carr and Mathias Payer. DataShield: Configurable data confidentiality
and integrity. In Asia Conference on Computer and Communications Security
(ASIACCS), 2017.

[21] Scott A. Carr and Mathias Payer. Poster: Data confidentiality and integrity. In
IEEE Symposium on Security and Privacy (S&P), 2015.

[22] Xinyang Ge, Mathias Payer, and Trent Jaeger. An evil copy: How the loader
betrays you. In Symposium on Network and Distributed System Security (NDSS),
2017.

[23] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-
Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented programming:
On the difficulty of preventing code reuse attacks in C++ applications. In IEEE
Symposium on Security and Privacy (S&P), 2015.

[24] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer.
Non-control-data attacks are realistic threats. In USENIX Security Symposium,
2005.

[25] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stack-
guard: Automatic adaptive detection and prevention of buffer-overflow attacks.
In USENIX Security Symposium, 1998.

[26] Arjan van de Ven and Ingo Molnar. Exec Shield. https://www.redhat.com/
f/pdf/rhel/WHP0006US_Execshield.pdf, 2004.

http://support.microsoft.com/kb/875352/EN-US/
http://support.microsoft.com/kb/875352/EN-US/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS%2FISO%2FIEC+9899-2012
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS%2FISO%2FIEC+9899-2012
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

160

[27] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic execution. In Symposium
on Network and Distributed System Security (NDSS), 2016.

[28] Scott A. Carr, Francesco Logozzo, and Mathias Payer. Automatic contract
insertion with CCBot. Transactions on Software Engineering (TSE), 2016.

[29] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. ProTracer: Towards practical
provenance tracing by alternating between logging and tainting. In Symposium
on Network and Distributed System Security (NDSS), 2016.

[30] Vern Paxson. Bro: A system for detecting network intruders in real-time. In
Computer Networks: The International Journal of Computer and Telecommuni-
cations Networking, 1999.

[31] Mathias Payer. Hexpads: A platform to detect stealth attacks. In International
Symposium on Engineering Secure Software and Systems, 2016.

[32] Ben Niu and Gang Tan. RockJIT: Securing just-in-time compilation using
modular control-flow integrity. In Conference on Computer and Communications
Security (CCS), 2014.

[33] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In Conference on Computer and Communications Security (CCS),
2005.

[34] Úlfar Erlingsson, Mart́ın Abadi, Michael Vrable, Mihai Budiu, and George C.
Necula. XFI: Software guards for system address spaces. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2006.

[35] Zhi Wang and Xuxian Jiang. Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity. In IEEE Symposium on Security and
Privacy (S&P), 2010.

[36] Pieter Philippaerts, Yves Younan, Stijn Muylle, Frank Piessens, Sven Lachmund,
and Thomas Walter. Code pointer masking: Hardening applications against
code injection attacks. In Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA), 2011.

[37] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. Mitigating code-reuse attacks
with control-flow locking. In Annual Computer Security Applications Conference
(ACSAC), 2011.

[38] Bin Zeng, Gang Tan, and Úlfar Erlingsson. Strato: A retargetable framework
for low-level inlined-reference monitors. In USENIX Security Symposium, 2013.

[39] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. Practical control flow integrity and
randomization for binary executables. In IEEE Symposium on Security and
Privacy (S&P), 2013.

[40] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Stephen McCamant, and
Laszlo Szekeres. Protecting function pointers in binary. In Asia Conference on
Computer and Communications Security (ASIACCS), 2013.

161

[41] Mingwei Zhang and R. Sekar. Control flow integrity for COTS binaries. In
USENIX Security Symposium, 2013.

[42] Ben Niu and Gang Tan. Monitor integrity protection with space efficiency and
separate compilation. In Conference on Computer and Communications Security
(CCS), 2013.

[43] Ben Niu and Gang Tan. Per-input control-flow integrity. In Conference on
Computer and Communications Security (CCS), 2015.

[44] John Criswell, Nathan Dautenhahn, and Vikram Adve. KCoFI: Complete control-
flow integrity for commodity operating system kernels. In IEEE Symposium on
Security and Privacy (S&P), 2014.

[45] Ben Niu and Gang Tan. Modular control-flow integrity. In Conference on
Programming Language Design and Implementation (PLDI), 2014.

[46] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. Enforcing forward-edge control-flow
integrity in GCC & LLVM. In USENIX Security Symposium, 2014.

[47] Michael Hicks. What is memory safety? http://www.pl-enthusiast.net/
2014/07/21/memory-safety/, 2014.

[48] Matthew S. Simpson and Rajeev K. Barua. Memsafe: ensuring the spatial and
temporal memory safety of cat runtime. Software: Practice and Experience,
2013.

[49] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds
checking: An efficient and backwards-compatible defense against out-of-bounds
errors. In USENIX Security Symposium, 2009.

[50] Emery D. Berger and Benjamin G. Zorn. Diehard: Probabilistic memory safety
for unsafe languages. In Conference on Programming Language Design and
Implementation (PLDI), 2006.

[51] Periklis Akritidis. Cling: A memory allocator to mitigate dangling pointers. In
USENIX Security Symposium, 2010.

[52] Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC architecture.
In USENIX Security Symposium, 2006.

[53] The Chromium Projects. Undefined behavior sanitizer for Chromium. http:
//www.chromium.org/developers/testing/undefinedbehaviorsanitizer,
November 2014.

[54] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. Type cast-
ing verification: Stopping an emerging attack vector. In USENIX Security
Symposium, 2015.

[55] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida,
Herbert Bos, and Erik van der Kouwe. TypeSan: Practical type confusion
detection. In Conference on Computer and Communications Security (CCS),
2016.

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.chromium.org/developers/testing/undefinedbehaviorsanitizer
http://www.chromium.org/developers/testing/undefinedbehaviorsanitizer

162

[56] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal war in
memory. In IEEE Symposium on Security and Privacy (S&P), 2013.

[57] Bill McCarty. SELinux: NSA’s Open Source Security Enhanced Linux. O’Reilly
Media, Inc., 2004.

[58] Vladimir Kiriansky, Derek Bruening, Saman P Amarasinghe, et al. Secure
execution via program shepherding. In USENIX Security Symposium, 2002.

[59] PaX-Team. Pax future. https://pax.grsecurity.net/docs/pax-future.
txt, 2003.

[60] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
Out of control: Overcoming control-flow integrity. In IEEE Symposium on
Security and Privacy (S&P), 2014.

[61] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose.
Stitching the gadgets: On the ineffectiveness of coarse-grained control-flow
integrity protection. In USENIX Security Symposium, 2014.

[62] Nicholas Carlini and David Wagner. ROP is still dangerous: Breaking modern
defenses. In USENIX Security Symposium, 2014.

[63] James R Bell. Threaded code. Communications of the ACM, June 1973.

[64] P. M. Kogge. An architectural trail to threaded-code systems. Computer, March
1982.

[65] Eddy H Debaere and Jan M van Campenhout. Interpretation and instruction
path coprocessing. Computer Systems. MIT Press, 1990.

[66] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Conference on Computer and
Communications Security (CCS), 2007.

[67] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. Return-oriented programming without
returns. In Conference on Computer and Communications Security (CCS), 2010.

[68] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-
oriented programming: Systems, languages, and applications. ACM Transactions
on Information System Security, 2012.

[69] Yannis Smaragdakis and George Balatsouras. Pointer Analysis. Foundations
and Trends in Programming Languages, 2015.

[70] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. 1999.

[71] Michael Hind and Anthony Pioli. Which pointer analysis should I use? ACM
SIGSOFT Software Engineering Notes, September 2000.

[72] Michael Hind. Pointer analysis. In Workshop on Program Analysis for Software
Tools and Engineering (PASTE), 2001.

https://pax.grsecurity.net/docs/pax-future.txt
https://pax.grsecurity.net/docs/pax-future.txt

163

[73] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow
analysis. In Program Flow Analysis, 1981.

[74] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object
sensitivity for points-to and side-effect analyses for Java. ACM SIGSOFT
Software Engineering Notes, 2002.

[75] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts
well. ACM SIGPLAN Notices, January 2011.

[76] O Lhoták and Laurie Hendren. Context-sensitive points-to analysis: Is it worth
it? Compiler Construction, 2006.

[77] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In European Conference
on Object-Oriented Programming (ECOOP), 1995.

[78] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual
function calls. ACM SIGPLAN Notices, October 1996.

[79] David Grove and Craig Chambers. A framework for call graph construction algo-
rithms. ACM Transactions on Programming Languages and Systems, November
2001.

[80] Markus Mock, Manuvir Das, Craig Chambers, and Susan J. Eggers. Dynamic
points-to sets. In Workshop on Program Analysis for Software Tools and
Engineering (PASTE), 2001.

[81] Brian Hackett and Alex Aiken. How is aliasing used in systems software? In
Symposium on Foundations of Software Engineering, 2006.

[82] Ben Hardekopf and Calvin Lin. The ant and the grasshopper. In Conference on
Programming Language Design and Implementation (PLDI), 2007.

[83] Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for millions of
lines of code. In Symposium on Code Generation and Optimization (CGO),
2011.

[84] Atanas Rountev, Scott Kagan, and Michael Gibas. Evaluating the imprecision
of static analysis. In Workshop on Program Analysis for Software Tools and
Engineering (PASTE), 2004.

[85] Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction
algorithms. ACM SIGPLAN Notices, October 2000.

[86] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. Mitigating code-reuse attacks
with control-flow locking. In Annual Computer Security Applications Conference
(ACSAC), 2011.

[87] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten
Holz, Ralf Hund, Stefan Nürnberger, and Ahmad-Reza Sadeghi. MoCFI: A
framework to mitigate control-flow attacks on smartphones. In Symposium on
Network and Distributed System Security (NDSS), 2012.

164

[88] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Transparent
ROP exploit mitigation using indirect branch tracing. In USENIX Security
Symposium, 2013.

[89] Jannik Pewny and Thorsten Holz. Control-flow restrictor: Compiler-based CFI
for iOS. In Annual Computer Security Applications Conference (ACSAC), 2013.

[90] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Robert Huijie Deng.
ROPecker: A generic and practical approach for defending against ROP attacks.
In Symposium on Network and Distributed System Security (NDSS), 2014.

[91] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. SAFEDISPATCH: Securing
C++ virtual calls from memory corruption attacks. In Symposium on Network
and Distributed System Security (NDSS), 2014.

[92] Robert Gawlik and Thorsten Holz. Towards automated integrity protection of
C++ virtual function tables in binary programs. In Annual Computer Security
Applications Conference (ACSAC), 2014.

[93] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. Hardware-assisted
fine-grained control-flow integrity: Towards efficient protection of embedded
systems against software exploitation. In Design Automation Conference (DAC),
2014.

[94] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin Hamlen, and Michael
Franz. Opaque control-flow integrity. In Symposium on Network and Distributed
System Security (NDSS), 2015.

[95] Ali José Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. CCFI:
cryptographically enforced control flow integrity. In Conference on Computer
and Communications Security (CCS), 2015.

[96] Aravind Prakash, Xunchao Hu, and Heng Yin. vfGuard: Strict protection for
virtual function calls in COTS C++ binaries. In Symposium on Network and
Distributed System Security (NDSS), 2015.

[97] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn
Song. VTint: Protecting virtual function tables’ integrity. In Symposium on
Network and Distributed System Security (NDSS), 2015.

[98] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. Practical context-sensitive
CFI. In Conference on Computer and Communications Security (CCS), 2015.

[99] Pinghai Yuan, Qingkai Zeng, and Xuhua Ding. Hardware-assisted fine-grained
code-reuse attack detection. In Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2015.

[100] Microsoft. Visual studio 2015 — compiler options — enable control flow guard,
2015. https://msdn.microsoft.com/en-us/library/dn919635.aspx.

[101] Dimitar Bounov, Rami Kici, and Sorin Lerner. Protecting C++ dynamic
dispatch through vtable interleaving. In Symposium on Network and Distributed
System Security (NDSS), 2016.

https://msdn.microsoft.com/en-us/library/dn919635.aspx

165

[102] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. Fine-grained
control-flow integrity for kernel software. In IEEE European Symposium on
Security and Privacy (Euro S&P), 2016.

[103] Mathias Payer, Antonio Barresi, and Thomas R. Gross. Fine-grained control-flow
integrity through binary hardening. In Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA), 2015.

[104] Orlando Arias, Lucas Davi, Matthias Hanreich, Yier Jin, Patrick Koeberl,
Debayan Paul, Ahmad-Reza Sadeghi, and Dean Sullivan. HAFIX: Hardware-
assisted flow integrity extension. In Design Automation Conference (DAC),
2015.

[105] Andrei Sabelfeld and A.C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 2003.

[106] Ben Niu and Gang Tan. MCFI readme. https://github.com/mcfi/MCFI/
blob/master/README.md, 2015.

[107] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control jujutsu: On the
weaknesses of fine-grained control flow integrity. In Conference on Computer
and Communications Security (CCS), 2015.

[108] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Christo-
pher Liebchen, Marco Negro, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
Losing control: On the effectiveness of control-flow integrity under stack attacks.
In Conference on Computer and Communications Security (CCS), 2015.

[109] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. A theory of
secure control flow. In International Conference on Formal Methods and Software
Engineering (ICFEM), 2005.

[110] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. The performance
cost of shadow stacks and stack canaries. In Asia Conference on Computer and
Communications Security (ASIACCS), 2015.

[111] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. SoK:
Automated software diversity. In IEEE Symposium on Security and Privacy
(S&P), 2014.

[112] Erven Rohou, Bharath Narasimha Swamy, and André Seznec. Branch prediction
and the performance of interpreters: Don’t trust folklore. In Symposium on
Code Generation and Optimization (CGO), 2015.

[113] Intel Inc. Intel 64 and IA-32 architectures. software developer’s manual, 2013.

[114] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. CFIMon: Detecting
violation of control flow integrity using performance counters. In Conference on
Dependable Systems and Networks (DSN), 2012.

[115] Ivan Fratric. ROPGuard: Runtime prevention of return-oriented programming
attacks.
http://www.ieee.hr/_download/repository/Ivan_Fratric.pdf, 2012.

https://github.com/mcfi/MCFI/blob/master/README.md
https://github.com/mcfi/MCFI/blob/master/README.md
http://www.ieee.hr/_download/repository/Ivan_Fratric.pdf

166

[116] Nergal. The advanced return-into-lib(c) exploits. Phrack, 11(58):http://phrack.
com/issues.html?issue=67&id=8, 2007.

[117] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-oriented
programming: a new class of code-reuse attack. In Asia Conference on Computer
and Communications Security (ASIACCS), 2011.

[118] Volodymyr Kuzentsov, Laszlo Szekeres, Mathias Payer, George Candea, Dawn
Song, and R. Sekar. Code pointer integrity. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[119] Microsoft. Visual Studio 2015 Preview: Work-in-progress security
feature. http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-
studio-2015-preview-work-in-progress-security-feature.aspx.

[120] Caroline Tice. Improving function pointer security for virtual method dispatches.
In GNU Tools Cauldron Workshop, 2012.

[121] Microsoft. Software vulnerability exploitation trends: Exploring the impact
of software mitigations on patterns of vulnerability exploitation (2013). http:
//download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-
2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf,
2013.

[122] Michalis Athanasakis, Elias Athanasopoulos, Michalis Polychronakis, Georgios
Portokalidis, and Sotiris Ioannidis. The devil is in the constants: Bypassing
defenses in browser JIT engines. In Symposium on Network and Distributed
System Security (NDSS), 2015.

[123] John L. Henning. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 2006.

[124] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. Automatic generation of data-oriented exploits. In USENIX Security
Symposium, 2015.

[125] BlueLotus Team. BCTF challenge: Bypass vtable read-only checks.
https://github.com/ctfs/write-ups-2015/tree/master/bctf-2015/
exploit/zhongguancun, 2015.

[126] Istvan Haller, Enes Gkta, Elias Athanasopoulos, Georgios Portokalidis, and
Herbert Bos. ShrinkWrap: VTable protection without loose ends. In Annual
Computer Security Applications Conference (ACSAC), 2015.

[127] Robert Gawlik and Thorsten Holz. Towards automated integrity protection of
C++ virtual function tables in binary programs. In Annual Computer Security
Applications Conference (ACSAC), 2014.

[128] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Symposium on Code Generation and
Optimization (CGO), 2004.

[129] Peter Collingbourne. LLVM — control flow integrity, 2015. http://clang.
llvm.org/docs/ControlFlowIntegrity.html.

http://phrack.com/issues.html?issue=67&id=8
http://phrack.com/issues.html?issue=67&id=8
http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx
http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
https://github.com/ctfs/write-ups-2015/tree/master/bctf-2015/exploit/zhongguancun
https://github.com/ctfs/write-ups-2015/tree/master/bctf-2015/exploit/zhongguancun
http://clang.llvm.org/docs/ControlFlowIntegrity.html
http://clang.llvm.org/docs/ControlFlowIntegrity.html

167

[130] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey,
and J. Alex Halderman. The matter of heartbleed. In Internet Measurement
Conference, 2014.

[131] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. Data-oriented
programming: On the expressiveness of non-control data attacks. In IEEE
Symposium on Security and Privacy (S&P), 2016.

[132] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel
Castro. Preventing memory error exploits with WIT. In IEEE Symposium on
Security and Privacy (S&P), 2008.

[133] Todd W. Schiller, Kellen Donohue, Forrest Coward, and Michael D. Ernst. Case
studies and tools for contract specifications. In International Conference on
Software Engineering (ICSE), 2014.

[134] H.-Christian Estler, CarloA. Furia, Martin Nordio, Marco Piccioni, and Bertrand
Meyer. Contracts in Practice. In Formal Methods, 2014.

[135] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano
Giuffrida. Poking holes in information hiding. In USENIX Security Symposium,
2016.

[136] Gene Novark and Emery D. Berger. Dieharder: Securing the heap. In Conference
on Computer and Communications Security (CCS), 2010.

[137] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In European Confer-
ence on Object-Oriented Programming (ECOOP), 1991.

[138] Microsoft IE. LiteBrite: HTML, CSS and JavaScript Performance Benchmark.
http://ie.microsoft.com/testdrive/Performance/LiteBrite/, 2014.

[139] Google. Octane JavaScript benchmark suite. https://developers.google.
com/octane/, 2014.

[140] Mozilla. Kraken 1.1 JavaScript benchmark suite. http://krakenbenchmark.
mozilla.org/, 2014.

[141] Apple. Sunspider 1.0.2 JavaScript benchmark suite. https://www.webkit.org/
perf/sunspider/sunspider.html, 2014.

[142] RightWare. Browsermark 2.1 benchmark. http://browsermark.rightware.
com/, 2014.

[143] FutureMark. Peacekeeper: HTML5 browser speed test. http://peacekeeper.
futuremark.com/, 2014.

[144] Guido Vranken. CVE-2015-5291: remote heap corruption in ARM mbed TLS /
PolarSSL, October 2015.

[145] Dean Sullivan, Orlando Arias, Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi,
and Yier Jin. Strategy without tactics: Policy-agnostic hardware-enhanced
control-flow integrity. In Design Automation Conference (DAC), 2016.

http://ie.microsoft.com/testdrive/Performance/LiteBrite/
https://developers.google.com/octane/
https://developers.google.com/octane/
 http://krakenbenchmark.mozilla.org/
 http://krakenbenchmark.mozilla.org/
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
http://browsermark.rightware.com/
http://browsermark.rightware.com/
http://peacekeeper.futuremark.com/
http://peacekeeper.futuremark.com/

168

[146] Nick Christoulakis, George Christou, Elias Athanasopoulos, and Sotiris Ioannidis.
HCFI: Hardware-enforced control-flow integrity. In Conference on Data and
Application Security and Privacy (CODASPY), 2016.

[147] Baiju Patel. Intel releases new technology specifications to protect against rop
attacks, 2016. http://blogs.intel.com/evangelists/2016/06/09/intel-
release-new-technology-specifications-protect-rop-attacks/.

[148] Miscosoft. SetProcessValidCallTargets function. https://msdn.microsoft.
com/en-us/enus/library/windows/desktop/dn934202(v=vs.85).aspx,
2015.

[149] Francisco Falcon. Exploiting Adobe Flash Player in the era of Control
Flow Guard. BlackHat EU’15 https://www.blackhat.com/docs/eu-
15/materials/eu-15-Falcon-Exploiting-Adobe-Flash-Player-In-The-
Era-Of-Control-Flow-Guard.pdf, 2015.

[150] David Weston and Matt Miller. Windows 10 mitigation improvements. Black-
Hat’16 https://www.blackhat.com/docs/us-16/materials/us-16-Weston-
Windows-10-Mitigation-Improvements.pdf, 2016.

[151] John Aycock. A brief history of just-in-time. ACM Computing Surveys (CSUR),
2003.

[152] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William R. Harris, Taesoo Kim,
and Wenke Lee. Enforcing kernel security invariants with data flow integrity. In
Symposium on Network and Distributed System Security (NDSS), 2016.

[153] Dinakar Dhurjati and Vikram Adve. Backwards-compatible array bounds check-
ing for C with very low overhead. In International Conference on Software
Engineering (ICSE), 2006.

[154] Harish Patil and Charles Fischer. Low-cost, concurrent checking of pointer and
array accesses in C programs. Software: Practice and Experience, January 1997.

[155] Julian Seward and Nicholas Nethercote. Using valgrind to detect undefined
value errors with bit-precision. In USENIX Annual Technical Conference (ATC),
2005.

[156] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hard-
bound: Architectural support for spatial safety of the C programming language.
In International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2008.

[157] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watchdog:
Hardware for safe and secure manual memory management and full memory
safety. In International Symposium on Computer Architecture (ISCA), 2012.

[158] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watchdoglite:
Hardware-accelerated compiler-based pointer checking. In Symposium on Code
Generation and Optimization (CGO), 2014.

[159] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes Kinder.
High system-code security with low overhead. In IEEE Symposium on Security
and Privacy (S&P), 2015.

http://blogs.intel.com/evangelists/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks/
http://blogs.intel.com/evangelists/2016/06/09/intel-release-new-technology-specifications-protect-rop-attacks/
https://msdn.microsoft.com/en-us/enus/library/windows/desktop/dn934202(v=vs.85).aspx
https://msdn.microsoft.com/en-us/enus/library/windows/desktop/dn934202(v=vs.85).aspx
https://www.blackhat.com/docs/eu-15/materials/eu-15-Falcon-Exploiting-Adobe-Flash-Player-In-The-Era-Of-Control-Flow-Guard.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Falcon-Exploiting-Adobe-Flash-Player-In-The-Era-Of-Control-Flow-Guard.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Falcon-Exploiting-Adobe-Flash-Player-In-The-Era-Of-Control-Flow-Guard.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf

169

[160] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. SAFECode: Enforcing
alias analysis for weakly typed languages. In Conference on Programming
Language Design and Implementation (PLDI), 2006.

[161] Istvan Haller, Erik van der Kouwe, Cristiano Giuffrida, and Herbert Bos. MET-
Alloc: Efficient and comprehensive metadata management for software security
hardening. In European Workshop on System Security, 2016.

[162] Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R. Sekar, Frank Piessens,
and Wouter Joosen. PAriCheck: An efficient pointer arithmetic checker for
C programs. In Asia Conference on Computer and Communications Security
(ASIACCS), 2010.

[163] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. On the effectiveness of address-space randomization. In
Conference on Computer and Communications Security (CCS), 2004.

[164] Matthew R Miller, Kenneth D Johnson, and Timothy William Burrell. Us-
ing virtual table protections to prevent the exploitation of object corruption
vulnerabilities, 2014. US Patent 8,683,583.

[165] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Conference
on Programming Language Design and Implementation (PLDI), 2005.

[166] Cole Schlesinger, Karthik Pattabiraman, Nikhil Swamy, David Walker, and Ben
Zorn. Modular protections against non-control data attacks. In IEEE Computer
Security Foundations Symposium (CSF), 2011.

[167] Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn. Samurai: Pro-
tecting critical data in unsafe languages. In European Conference on Computer
Systems (EUROSYS), 2008.

[168] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu.
Shreds: Fine-grained execution units with private memory. In IEEE Symposium
on Security and Privacy (S&P), 2016.

[169] Mathias Payer, Tobias Hartmann, and Thomas R Gross. Safe loading: A
foundation for secure execution of untrusted programs. In IEEE Symposium on
Security and Privacy (S&P), 2012.

[170] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client:
A sandbox for portable, untrusted x86 native code. In IEEE Symposium on
Security and Privacy (S&P), 2009.

[171] Mathias Payer and Thomas R. Gross. Fine-grained user-space security through
virtualization. In Conference on Virtual Execution Environments (VEE), 2011.

VITA

170

VITA

Scott A. Carr

EDUCATION

• Doctor of Philosophy, May 2017
Computer Science, Purdue University

• Master of Science in Engineering, December 2011
Computer Engineering, University of Michigan-Dearborn

• Bachelor of Science, May 2006
Computer Engineering, Lawrence Technological University
Summa Cum Laude

TEACHING EXPERIENCE

• Teaching Assistant, Purdue University, CS510 Software Engineering, Spring 2015.

PROFESSIONAL EXPERIENCE

Research Intern Summer 2016
Mozilla Corporation, San Francisco, CA.

Research Intern Summer 2015
Microsoft Research, Redmond, WA.

Research Intern Spring 2014
Microsoft Research, Redmond, WA.

Computer Scientist July 2011
Michigan Aerospace Corporation, Ann Arbor, MI.

Engineer in Research Senior March 2008
University of Michigan, Ann Arbor, MI.

PUBLICATIONS

1. Burow, N., Carr, S. A., Brunthaler, S. Payer M., Nash, J., Larsen, P., Franz, M.
Control-flow Integrity: Protection, Security, and Performance, ACM Computing
Surveys 2018. To appear.

171

2. Carr, S. A., Payer M, DataShield: Configurable Data Confidentiality and
Integrity, Asia Conference on Communications and Computer Security 2017.

3. Carr, S. A., Payer, M., Logozzo, F., Automatic Contract Insertion with CCBot,
IEEE Transactions on Software Engineering 2016.

4. Zhang, C., Carr, S. A., Li, T., Ding, Y., Song, C., Payer, M., Song, D., VTrust
Regaining Trust on Your Virtual Calls, Network and Distributed Systems Security
Symposium 2016.

5. Carr, S. A., Payer M. Poster: Data Confidentiality and Integrity. IEEE
Symposium on Security and Privacy (S&P) 2015.

6. Carr, S. A. Pittman, N., Extensions to gNOSIS to Support Static Analysis of
System Verilog HDL Code, MSR-TR-2015-68, 2015.

7. Kim, S., Adams, D. E., Sohn, H., Rodriguez Rivera, G., Vitek, J., Carr, S.
A., and Grama, A., Validation of Vibro-Acoustic Modulation of wind turbine
blades for structural health monitoring using operational vibration as a pumping
signal, 2013, Proceedings of the 9th International Workshop on Structural Health
Monitoring, Palo Alto, CA.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Securing Systems Software
	Safe Systems Programming Languages
	Formal Verification
	Vulnerability Mitigation

	Challenges
	Attacker Model
	Thesis Statement
	Contributions
	Publications
	Summary and Outline

	SECURITY BACKGROUND
	Attack Vectors
	Control-Flow Hijack Attacks
	VTable Attacks

	Non-Control-Data Attacks
	Widely Deployed Defenses
	Defense Techniques Research
	Static Bug Finding
	Runtime Monitors
	Logging and Auditing

	Security Properties of C/C.30ex++1000
	Manual Memory Management
	Analysis Challenges
	Just-In-Time Compilation
	Dynamic Dispatch

	Control-Flow Integrity
	Memory Safety
	Spatial Memory Safety
	Temporal Memory Safety

	Memory Safety Enforcement Mechanisms
	Memory Safety Using Pointer Checking
	Memory Safety Using Object Alignment
	Protecting Metadata from Attackers
	Important Memory Safety Mechanisms

	Type Safety
	Type Safety Enforcement Mechanisms

	Security Background Summary

	CONTROL-FLOW INTEGRITY
	Abstract
	Introduction
	Foundational Concepts
	Control-Flow Integrity Example
	Classification of Control-Flow Transfers
	Classification of Static Analysis Precision

	Prior Work on Static Analysis
	A Theoretical Perspective
	A Practical Perspective
	Backward Control Flows
	Nomenclature and Taxonomy

	Security
	Qualitative Security Guarantees
	Quantitative Security Guarantees
	Implementations
	Results
	Previous Security Evaluations and Attacks

	Performance
	Measured CFI Performance
	Reported CFI Performance

	Summary

	VTRUST
	Abstract
	Introduction
	Threat Model
	Defense Mechanisms
	Attack Surface

	Design
	Overview of VTrust
	Virtual Function Type Enforcement
	VTable Pointer Sanitization

	Implementation
	Virtual Function Type Enforcement
	VTable Pointer Sanitization

	Summary

	DATA CONFIDENTIALITY AND INTEGRITY
	Abstract
	Introduction
	Motivation
	Memory Safety Overhead
	Memory Safety, Integrity, and Confidentiality
	Non-Control-Data Attacks

	Threat Model
	Design
	Determining the Sensitive Types
	Sensitivity Rules
	Enforcement

	Implementation
	Identifying Annotated Types
	Identifying Sensitive Variables

	Runtime
	Sensitive Globals and Constants
	Instruction Rewriting
	Rewriting for Non-Sensitive Variables
	Rewriting for Sensitive Variables
	Standard Library Instrumentation
	Limitations

	Summary

	EVALUATION
	Evaluation Plan
	VTrust
	Virtual Call Statistics
	Performance Overhead
	Performance Comparison
	Memory Overhead
	Case Study: Real World VTable Injection Attacks
	Case Study: Real World VTable Reuse Attacks

	Data Confidentiality and Integrity
	Microbenchmarks
	Case Study: libquantum
	Case Study: mbed TLS
	Case Study: astar
	SPEC CPU2006 Evaluation
	Security Evaluation

	Summary

	DISCUSSION
	Benchmarking Control-Flow Integrity Mechanisms
	Cross-cutting Concerns for Control-Flow Integrity
	Enforcement Mechanisms
	Open Problems
	Research Frontiers

	Data Confidentiality and Integrity Future Work
	Automatically Identifying Sensitive Data
	Sensitivity Analysis

	Summary

	RELATED WORK
	Memory Safety
	Control-Flow Integrity
	VTable Hijacking Defense

	Non-Control-Data Defenses
	Isolation Mechanisms
	Summary

	CONCLUSION
	REFERENCES
	VITA

